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Abstract  The paper presents new methods for correcting the processing characteristics of 
measurement systems based on a modified Grünwald-Letnikov fractional calculus definition. The 
presented methods are based on the determination of the fractional order as an estimation factor. 
Two methods are presented: a fractional order array and a fractional order function. Both methods 
can be used in DSP systems as methods to correct the processing characteristics of systems with 
measuring transducers and measurement systems in general. 

Key words  fractional calculus, Grünwald-Letnikov, processing correction 

 

INTRODUCTION 

The theory of fractional integration and differentiation comes in many solutions, the best 
known of which are Grünwald-Letnikov differintegals, Riemann-Liouville and Caputo’s fractional 
calculus [1-4]. The fractional calculus have found a range of applications, in particular, modelling 
of process dynamics and physical effects whose modelling with classic mathematical apparatus 
has not always been faithful to reality, e.g. modelling of such effects as memory process, PID 
controllers, robust control, heat transfer process, electrical drive, voltage regulator, charging and 
discharging of supercapacitors, robot manipulators, cell growth dynamics, biomedical 
engineering, image processing, chemical reaction processes, dynamics of automatic or electronic 
systems, photovoltaic systems, hybrid power systems or such non-technical issues as analysis of 
financial processes [5-19]. The fractional calculus seems an ideal tool for modelling of nonlinear 
and highly complex effects and processes. General dynamics models using fractional calculus and 
their particular solutions are now well described. The problem is to define a clear relationship 
between parameters of the real object model and the fractional order [20-23]. This paper 
attempts to delve into this topic from the point of view of applying the fractional calculus to the 
correction of measurement signal processing characteristics. 
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1 ASSUMPTIONS 

1.1 ASSUMPTION 1 

The measured signal �̂� is assumed to be subject to measurement error and the reference 
signal 𝑥 is assumed to be without measurement error (or subject to less error). The measured 
signal is usually time-shifted relative to the reference signal and has a different amplitude. These 
differences may be due to the characteristics of the measuring circuit, in which each circuit 
element (e.g. measuring transducer, A/D transducer, conditioner) introduces a measurement 
error. Examples of reference and measurement signals are shown in Fig. 1. 

 

Fig. 1. Reference input signal 𝒙(𝒕) and measuring input signal 𝒙(𝒕) 

1.2 ASSUMPTION 2 

The definition of the fractional calculus is to follow the Newton-Leibniz theorem: 

𝐹′(𝑎) = lim
(𝑏−𝑎)→0

𝐹(𝑏) − 𝐹(𝑎)

𝑏 − 𝑎
= lim

(𝑏−𝑎)→0

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

𝑏 − 𝑎
, (1) 

where 𝐹 is a primitive function of 𝑓 function. This assumption is satisfied by the modified 
Grunwald-Letnikov differintegral [23]: 

𝑑𝑛

𝑑𝑡𝜂
𝑔(𝑡0) = lim

𝑑𝑡𝜂→0

∑ (−1)𝑚 (
𝑛
𝑚
)𝑓(𝑡𝑛−𝑚)

𝑛
𝑚=0

𝑑𝑡𝜂
≡ 𝐷𝜂𝑛 𝑔(𝑡0)𝑑𝑡

𝜂 , (2) 

where 𝑑𝑛 𝑑𝑡𝜂⁄ 𝑔(𝑡0) and 𝐷𝜂𝑛 𝑔(𝑡0) are notations of the fractional derivative connected  
to 𝑛-order derivative and 𝜂 fractional order and 𝑑𝑡𝜂 = 𝑑𝑡 + Δ𝑡 = 𝑑𝑡𝜂, where 𝛥𝑡 is an interval 
error. 
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2 VARIABLE ORDER MODEL 

According to the Newton-Leibniz theorem, there is a following relation: 

𝑦(𝑡) →
𝑑

𝑑𝑡
𝑦(𝑡) = 𝑥(𝑡)  → ∫𝑥(𝑡) 𝑑𝑡 = ∫(

𝑑

𝑑𝑡
𝑦(𝑡))𝑑𝑡 = 𝑦(𝑡) (3) 

and similarly for the modified Grünwald-Letnikov differintegral (2) (it is not right for the classical 
Grünwald-Letnikov differintegral [1-2], [4]): 

�̂�(𝑡) → 𝐷𝜂1 �̂�(𝑡)𝑑𝑡𝜂 = �̂�(𝑡)  →  𝐷−𝜂1 �̂�(𝑡)𝑑𝑡𝜂 = 𝐷−𝜂1 ( 𝐷𝜂1 �̂�(𝑡)𝑑𝑡𝜂)𝑑𝑡𝜂 = �̂�(𝑡) (4) 

Taking assumption that the 𝜂 order is a correction factor for the measurement signal �̂�(𝑡), 
where in the ideal case �̂�(𝑡) = 𝑥(𝑡), the differintegral of �̂�(𝑡) (for minus 𝜂) and the integral of 
𝑥(𝑡) are equal to each other for a given 𝜂: 

𝐷−𝜂1 �̂�(𝑡)𝑑𝑡𝜂 = ∫𝑥(𝑡) 𝑑𝑡 (5) 

For a sequence of reference signal values: 

𝑥(𝑡) = [𝑥1, 𝑥2, … , 𝑥𝑛] (6) 

and a sequence of measurement signal values: 

�̂�(𝑡) = [�̂�1, �̂�2, … , �̂�𝑛] (7) 

where:  𝑥1 = 𝑥(𝑡1), …, 𝑥𝑖 = 𝑥(𝑡𝑖), �̂�1 = �̂�(𝑡1), …, �̂�𝑖 = �̂�(𝑡𝑖), 𝑖 ∈ [1, … , 𝑛] and  
𝑑𝑡 = 𝑡2 − 𝑡1 = ⋯ = 𝑑𝑡 = 𝑡𝑛 − 𝑡𝑛−1 = 𝑐𝑜𝑛𝑠𝑡. , the integral within 𝑡1 and 𝑡2 has the form: 

∫ 𝑥(𝑡)
𝑡2

𝑡1

𝑑𝑡 = lim
𝑑𝑡→0

(𝑥2 − 𝑥1)𝑑𝑡 = ∆𝑥1𝑑𝑡 (8) 

and the differintegral is written as: 

𝐷−𝜂1 �̂�(𝑡)𝑑𝑡𝜂1 = lim
𝑑𝑡𝜂→0

(�̂�2 − �̂�1)𝑑𝑡
𝜂 = ∆�̂�1𝑑𝑡

𝜂1 . (9) 

Substituting equations (8) and (9) into (5): 

∆�̂�1𝑑𝑡
𝜂1 = ∆𝑥1𝑑𝑡. (10) 

Determining 𝜂 order from (10): 

𝜂1 = 1 + log𝑑𝑡
∆𝑥1
∆�̂�1

. (11) 

For any of 𝑖 the order (11) has form: 

𝜂𝑖 = 1 + log𝑑𝑡
∆𝑥𝑖
∆�̂�𝑖

. (12) 

where 𝜂 = [𝜂1, 𝜂2, … , 𝜂𝑛], ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 and ∆�̂�𝑖 = �̂�𝑖 − �̂�𝑖−1. 
Formula (12) yields a sequence of values of 𝜂 order depending on the quotient of the 

increments ∆𝑥(𝑡)/∆�̂�(𝑡). Since the determination of 𝜂 is based on increments rather than 
function values, the characteristic 𝜂𝑖(∆�̂�) can be taken as a general case for the correction of any 
signal (for small values of 𝑑𝑡). Assuming that the values of 𝜂𝑖  are known, the estimated increment 
values of signal 𝑥 is of the form (from equation (10)): 

∆𝑥𝑖 = ∆�̂�𝑖𝑑𝑡
𝜂𝑖−1. (13) 

 



Processing Characteristics Correction Of Measuring Systems By Means A Differintegral Of Variable Order 

10 

The correction procedure consists of two stages: 
1. Determination of 𝜂 from a reference signal – equation (12). 
2. Correction of the measurement signal on the basis of known values of 𝜂 - equation (13). 

3 PROCEDURE FOR DETERMINING THE 𝜼 ORDER 

The value of 𝜂𝑖  can be determined from array data (chapter 2.2.1) or from the equation of 
function (chapter 3.1 and 3.2). All calculations and characteristics were performed in Matlab. 

3.1 ARRAY 𝜼𝒊 DATA  

A block diagram of the system determining the order values 𝜂𝑖  is shown in Fig. 1. The 𝑦 signal 
is the input signal to the measuring system (e.g. measuring transducer), the Ideal System block is 
the reference measuring system and the Real System block is the measuring system with an error 
in relation to the Ideal System. The Factor 𝜂 block determines an array of 𝜂 order values based on 
equation (12). 

 

Fig. 2. Block diagram of the system determining the order values 

A typical calibration signal for e.g. measuring transducers is a sine signal. For this signal, the 
increment of successive ∆𝑥 values is not constant for a constant sampling value 𝑑𝑡. It was 
therefore assumed that the sinusoidal signal would be the reference signal for determining 𝜂. 

 

Fig. 3. The 𝜼 order relative to the increments of the reference and measurement signals 

The operation of the correction system is shown for example reference 𝑥(𝑡) = 𝑠𝑖𝑛 𝑡 and 
measurement  �̂�(𝑡) = 1.1𝑠𝑖𝑛(𝑡 + 𝜋/30) signals and parameters dt=0.1 ms, f=200 rad/s. The 
characteristics 𝑥(𝑡) and �̂�(𝑡) are shown in Fig. 1. Fig. 3 shows the change in 𝜂 relative to the 
increments of the reference and measurement signals. The direction of the characteristics 
depends on the sign of the signals and their increments. It can be seen from Fig. 3 that 𝜂 for the 
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reference and measurement signals (for small increments) are equal or approximately equal to 
each other. Discrepancies at the extremes are due to zero or near-zero values of the signal 𝑥(𝑡) 
or �̂�(𝑡), resulting in (∆𝑥𝑖)/(∆�̂�𝑖  ) → 0 or (∆𝑥𝑖)/(∆�̂�𝑖  ) = 0 which, from the point of view of 
the definition of logarithm, is not permissible. This situation is due to the phase shift of the 
waveforms and its impact can be reduced by reducing the value of 𝑑𝑡 (in this case, the 
impermissible value from the definition of the logarithm (∆𝑥𝑖)/(∆�̂�𝑖  ) = 0 should be 
disregarded) - in the further description this case is considered as a general one. Another solution 
is to scale the signals so that they do not reach 0 or to limit the 𝜂 order. 

3.2 FUNCTION OF 𝜼𝒊 

Using the data from the 𝜂𝑖  array (chapter 3.1), the function can be determined that describes 
𝜂𝑖  (by Lagrange polynomials, for example). As the value of 𝜂𝑖  depends on the direction of change 
of the increment, these must be two functions, where the choice of function is implemented by 
the logic circuit. For the signals in Fig. 1, the function 𝜂𝑖  is described by example Lagrange 
polynomials: 

𝜂𝑖 =

{
 

 
𝐴1𝑑�̂�

3 + 𝐴2𝑑�̂�
2 + 𝐴3𝑑�̂�

2 + 𝐴1𝑑�̂� + 𝐴0 𝑓𝑜𝑟

 (𝑑�̂� < 0 𝐴𝑁𝐷 𝑑�̂� ↑< 0) 𝑂𝑅 (𝑑�̂� > 0 𝐴𝑁𝐷 𝑑�̂� ↑< 0)
 

𝐵1𝑑�̂�
3 + 𝐵2𝑑�̂�

2 + 𝐵3𝑑�̂�
2 + 𝐵1𝑑�̂� + 𝐵0 𝑓𝑜𝑟

 (𝑑�̂� > 0 𝐴𝑁𝐷 𝑑�̂� ↓> 0) 𝑂𝑅 (𝑑�̂� < 0 𝐴𝑁𝐷 𝑑�̂� ↓> 0)
 

 (14) 

 

where the arrow corresponds to a negative or positive increment. 
For  𝑥(𝑡) = 𝑠𝑖𝑛 𝑡 and  �̂�(𝑡) = 1.1𝑠𝑖𝑛(𝑡 + 𝜋/30): 

𝐴 = [−1.108𝑒 + 04,−7.226,1.793,1.012] (15) 

𝐵 = [1.284𝑒 + 04,−27.280, −2.219,1.014] (16) 

Fig. 4 compares 𝜂𝑖  obtained from the 𝜂𝑖  array and from the 𝜂𝑖  function. 

 

Fig. 4. The 𝜼-array and 𝜼-function 
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4 RESULTS 

Fig. 5 shows the signals: 𝑥(𝑡) (reference), �̂�(𝑡) (measured), �̂� (𝑡) − 𝑎𝑟𝑟𝑎𝑦 −
𝑒𝑠𝑡𝑖𝑚 (estimated from the array) and �̂� (𝑡) − 𝑓𝑢𝑛𝑐 − 𝑒𝑠𝑡𝑖𝑚 (estimated from the function). 
The characteristics of the 𝑥(𝑡) and �̂� (𝑡) − 𝑎𝑟𝑟𝑎𝑦 − 𝑒𝑠𝑡𝑖𝑚 signals coincide. 

 

Fig. 5. Output signals 

Fig. 6 shows the relative errors of the measured signal (Input Relative error), estimated from 
the array (Input Array Fractional Relative error) and estimated from the function (Input Function 
Fractional Relative error). The assessment of the estimation is shown in Table 1, where the 
assessment factor is the median. 

 

Fig. 6. Absolute values of the relative errors of the measured signal (Input Relative Error 
- IRE), the estimated from the array (Input Array Fractional Relative Error - IRFFE) and 
the estimated from the function (Input Function Fractional Relative Error - IARE 
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Table 1. Median of signals error absolute values 

𝐼𝑅𝐸 𝐼𝑅𝐹𝐹𝐸 𝐼𝐴𝑅𝐸 

14.4880 % 11.8931 % close to 10−13 % 

5 DISCUSSION AND CONCLUSIONS 

The estimation of the measured signal using the estimation array gives very good results with 
an error close to 0%. In this method, it is necessary to know the values of the signal increments 
and the corresponding 𝜂𝑖  order values stored in the data array. It can be used in DSP systems 
with high computation speed and large memory capacity (e.g. in systems for the correction of 
non-linear processing characteristics of measuring transducers). Simpler to implement is the 
method where the order 𝜂𝑖  is described by a function that has been previously determined from 
the data of the estimation array method. The disadvantage of this method is the inaccuracy of 
the estimation compared to the array method. However, the signal error after estimation is lower 
than without estimation by approximately 2.6%. This method uses a simple determination of the 
estimation equation using Lagrange method. It seems that better results can be achieved by 
determining a more precise equation. For better results, other estimation methods or data 
interpolation can be tried. 

REFERENCES 

[1] Oldham, K.B. Spanier, J. (2008) The Fractional Calculus: Theory and Applications of 
Differentiation and Integration to Arbitrary Order. Dover Publications 

[2] Das, S. (2008) Functional Fractional Calculus for System Identification and Controls. 
Springer-Verlag 

[3] Jiao, Z., Chen, YQ., Podlubny I. (2012) Distributed-Order Dynamic Systems. Stability, 
Simulation, Applications and Perspectives; Springer London 

[4] Podlubny I. (1999) Fractional Differential Equations. An Introduction to Fractional 
Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of 
Their Applications. Academic Press 

[5] Petráš, I. Terpák, J. (2023) Fractional calculus as a cimple tool for modeling and analysis of 
long memory process in industry, doi: 10.3390/math7060511 

[6] Hunek, W.P., Feliks T. (2021) “Robust fractional-order perfect control for non-full rank 
plants described in the Grünwald-Letnikov IMC framework”, FCAA 2021, 24(4):1257-1274. 
doi: 10.1515/fca-2021-0054 

[7] Mahata, S., Herencsar, N. and Maione G. (2023) “Optimal approximation of analog PID 
controllers of complex fractional-order”, FCAA 2023, 10.1007/s13540-023-00168-x 

[8] Oprzędkiewicz K. (2021) “Fractional order, discrete model of heat transfer process using 
time and spatial Grünwald-Letnikov operator”, Bulletin of the Polish Academy of Sciences 
Technical Sciences 69(4) 

[9] Sowa M. and Majka L. and Wajda K. (2023) “Excitation system voltage regulator modeling 
with the use of fractional calculus”, AEU - International Journal of Electronics and 
Communications 159, doi: 10.1016/j.aeue.2022.154471 



Processing Characteristics Correction Of Measuring Systems By Means A Differintegral Of Variable Order 

14 

[10] Matusiak M. , Bąkała, M., Wojciechowski, R. and Ostalczyk, P. (2020) „Fractional discrete 
model of an electrical drive with brushless micro-motor”, Bulletin of the Polish Academy of 
Sciences Technical Sciences 68(3) 

[11] Brouji H. El, Vinassa J.-M., et al. (2008) “Ultracapacitors self-discharge modelling using a 
physical description of porous electrode impedance”, IEEE Vehicle Power and Propulsion 
Conference 2008 

[12] Lopes, A.; Tenreiro Machado, J. (2021) “Fractional-Order Sensing and Control: Embedding 
the Nonlinear Dynamics of Robot Manipulators into the Multidimensional Scaling Method” 
Sensors 2021, 21(22), 7736, doi: 10.3390/s21227736 

[13] Ullah, N. (2020) “Fractional order sliding mode control design for a buck converter feeding 
resistive power loads”, Mathematical Modelling of Engineering Problems 2020, Vol. 7, No. 
4, pp. 649-658 

[14] Su, L.; Zhou, G.; Hu, D.; Liu, Y.; Zhu, Y. (2021) “Research on the State of Charge of Lithium-Ion 
Battery Based on the Fractional Order Model”, Energies 2021, 14, 6307, doi: 
10.3390/en14196307 

[15] Magin, R.L., Hall, M. G., Karaman, M. M. and Vegh, V. (2016) “Fractional Calculus Models of 
Magnetic Resonance Phenomena: Relaxation and Diffusion”, Critical reviews in biomedical 
engineering 48(5), 10.1615/CritRevBiomedEng.2020033925 

[16]  Yang Q., Chen D., Zhao T., Chen  YQ. (2016) “Fractional calculus in image processing: a 
review”, Fractional Calculus and Applied Analysis 2016, vol. 19, No. 5, pp. 1222-1249, doi: 
10.1515/fca-2016-0063 

[17] Kaczorek T. (2021) “Positive electrical circuits with the chain structure and cyclic Metzler 
state matrices”, Bulletin of the Polish Academy of Sciences Technical Sciences 69(4) 

[18] Dzieliński, A., Sierociuk, D. and Sarwas, G. (2010) „Some applications of fractional order 
calculus”, Bulletin of the Polish Academy of Sciences Technical Sciences 58(4) 

[19] Tarasov, V. E. (2020) “Mathematical Economics: Application of Fractional Calculus”, 
Mathematics 2020 8(5), doi: 10.3390/math8050660 

[20] Tarasov V. E. (2017) “Interpretation of Fractional Derivatives as Reconstruction from 
Sequence of Integer Derivatives”, Fundamenta Informaticae 2017 Vol. 151, No 1-4, pp. 
431–442 

[21] Ortigueira, M.D., Machado J.T.M. (2018) “On fractional vectorial calculus”, Bulletin of the 
Polish Academy of Sciences: Technical Sciences 2018, No 4 

[22] Cioć R. (2016) “Physical and geometrical interpretation of Grünwald-Letnikov differintegrals: 
measurement of path and acceleration”, Fractional Calculus and Applied Analysis 2016, Vol. 
19, No 1(2016), pp. 161-172, doi: 10.1515/fca-2016-0001 

[23] Cioć R., Chrzan M. (2019) “Fractional order model of measured quantity errors” Bull. Pol. Ac.: 
Tech. 2019, Vol. 67, No. 6, doi: 10.24425/bpasts.2019. 130887 


