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Abstract — The Drazin inverse of matrices is applied to analysis of the pointwise completeness
and the pointwise degeneracy of the descriptor standard and fractional linear continuous-time
and discrete-time systems. It is shown that: 1) The descriptor linear continuous-time system is
pointwise complete if and only if the initial and final states belong to the same subspace. 2) The
descriptor linear discrete-time system is not pointwise complete if its system matrix is singular.
3) System obtained by discretization of continuous-time system is always not pointwise
complete. 4) The descriptor linear continuous-time system is not pointwise degenerated in any
nonzero direction for all nonzero initial conditions. 5) The descriptor fractional system is
pointwise complete if the matrix defined by (36) is invertible. 6) The descriptor fractional
system is pointwise degenerated if and only if the condition (41) is satisfied. Considerations are
illustrated by examples of descriptor linear electrical circuits.
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1 INTRODUCTION

A dynamical system described by homogenous equation is called pointwise complete if every
final state of the system can be reached by suitable choice of its initial state. A system, which is not
pointwise complete is called pointwise degenerated. The pointwise completeness and pointwise
degeneracy of linear continuous-time systems with delays have been investigated in [2, 3, 8, 10,
12], the pointwise completeness of linear discrete-time cone systems with delays in [13] and of
fractional linear systems in [1, 6-8]. The pointwise completeness and pointwise degeneracy of
standard and positive hybrid systems described by the general model have been analyzed in [4]
and of positive linear systems with state-feedbacks in [5]. Mathematical fundamentals of the
fractional calculus are given in the monographs [9, 11].

In this paper the Drazin inverse of matrices will be applied to analysis of the pointwise
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completeness and the pointwise degeneracy of the descriptor linear continuous-time and discrete-
time systems.

The paper is organized as follows. In section 2 the basic definitions and theorems concerning
descriptor linear continuous-time and discrete-time systems and the Drazin inverse of matrices are
recalled. The pointwise completeness of descriptor linear continuous-time and discrete-time
systems is investigated in section3 and the pointwise degeneracy in section 4. In section 5 the
considerations have been extended to fractional descriptor linear continuous-time systems.
Concluding remarks are given in section 6. The considerations are illustrated by examples of the
linear electrical circuits.

The following notation will be used: ‘R - the set of real numbers, SR™™ - the set of N X M
real matrices, SR™™ - the set of NXM real matrices with nonnegative entries and

RT =R, | o -the NX N identity matrix. ImP is the image of the operator(matrix) P.

2 AUTONOMOUS DESCRIPTOR LINEAR SYSTEMS AND THEIR SOLUTIONS

Consider the autonomous descriptor continuous-time linear system

Ex=Ax, k= (1)
dt

where X = X(t) € R" is the state vectorand E, Ae R™".
It is assumed that detE =0 but the pencil (E, A) is regular, i.e.
det[Es— A] =0 for some s C (the field of complex numbers). (2)

Assuming that for € € R det[Ec— A] # 0 and premultiplying (1) by [EC— A]f1 we obtain
Ex = Ax, (3a)
where

E =[Ec— A]*E, A=[Ec—A]A. (3b)

The equations (1) and (3a) have the same solution X.
Definition 1. A matrix E® € R%" is called the Drazin inverse of E if it satisfies the conditions

EEP =EPE, (4a)
EPEEP =EP, (4b)
EPET™ =EY, (4c)

where ¢ istheindexof E defined as the smallest nonnegative integer satisfying the condition
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rankEY = ranke 9. (5)

Theorem 1. Let
P=EEP, (6a)
Q=AEP (6b)

Then

PX=P for k=23,... (7a)
PQ=QP=0Q, (7b)
PEP=EP, (7c)
Px=x. (7d)

Proof is given in [8].
Theorem 2. The solution of the equation (3a) has the form

x(t) = e F'EE Pw, (8)

where we R" is any vectorand X(0) € INEE® =ImP.
Proof is given in [8].
Consider the autonomous descriptor discrete-time linear system

Exi+l = AXi, | :0,l... (9)

where X, € R" is the state vectorand E, Ae R™",
It is assumed that detE =0 and
det[Ez- A] =0 forsome zeC (10)

Choosing € € R such that det[Ec— A] =0 and premultiplying (9) by [EC — A]_l we obtain

EXi+1 = IKXI y (11)

where E and A defined by (3b).
Theorem 1 is also valid for the discrete-time systems.

Using the Drazin inverse EP ofthe matrix E we may find the solution X; of the equation (11)
by the use of the following Theorem.
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Theorem 3. The solution of the equation (11) has the form
x; =[EA]EPEV=Q'Xy, i =12,... (12)

where veR" is any vector and X, € Im EEP =Im P, the matrices P and Q are defined by
(6).

Proof is given in [8].
3 POINTWISE COMPLETENESS OF DESCRIPTOR LINEAR SYSTEMS

In this section conditions for the pointwise completeness of descriptor continuous-time and
discrete-time linear systems will be established.

3.1  CONTINUOUS-TIME SYSTEMS
Definition 2. The descriptor continuous-time linear system (1) is called pointwise complete for
t=t, ifforfinal state X; = X(t;) € R" there exists an initial condition x(0) € ImP such that

X; =X(t;)eIlmP (14)
where P is defined by (6a).
Theorem 4. The descriptor system (1) is pointwise complete for any t=t; and every
X; € R" ifand only if the condition (14) is satisfied.
Proof. Note that dete®' =0 and [th]fl =&~ forany t. From (8) for t=t; wehave

x(0)=e 2 x, (15)

Therefore, for every X; there exists x(0) € ImP such that x; =x(t;).o

Example 1. Consider the descriptor linear electrical circuit shown in Figure 1 with given
resistances Ry, R,, R3, inductances Ly, L,, L; and source voltages €;, €.

Fig. 1. Electrical circuit

Using Kirchhoff’s laws we may write the equations

10
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. di . di

e, = Ryi, + L, (L—'f+ Ryiy + L3(jj—|: (16)
iy +i,—i3=0
which can be written in the form
| |
ed iz = iz +B[el} (17a)
dt| . . e,
I3 ] I3
where
L 0 L; _—R1 0 -R; 10
E=0 L Ly, A=| 0 -R, -R;B=|0 1 (17b)
0 0 O |1 1 -1 00

The assumption (2) for the electrical circuit is satisfied, since the matrix E is singular
(detE =0) and
Lis+R; 0 L3S+ R,
det[Es—Al=| 0 L,s+R, LyS+Rs|=[Ly(L, +Lg)+L,Ls]s?
-1 -1 -1
+[Ri (L, + L3) + Ry (L + Lg) + Ry (Ly + Ly)Is+ Ry (R, + Rg) + RyRy

(18)

Therefore, the electrical circuit is a descriptor linear continuous-time system.
Note that the matrix A defined by (17b) is nonsingular and we may choose in (2) s =0. In this

case we obtain

1 Li(R; +Rg) —L,Rg LR,
E=[-Al"'E= -LiRs L (R +Ry) L3Ry (19)
Ri(Ry +R3) + RyRy LR LR L.(R +R
V) oM 3(Ri+Ry)
A=[-AT*A=—I, (20)

and
€d11 €41 ©€gu3 1

=D
E”=leg21 €12 €423| (21)

€d31 €432 €433

11
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Lk+L)  -Lls LoLs
P=EEP=| -LL; Ly(L+Ly) L, |5 (22)
LL, LL Ly(L + L) L
Q=AEP =-EP (23)
where
8411 = Ly (L3R, + L3R, + L3Ry + L3R, +2L,L4Ry),
€412 = —Lz(L§R1 + L%Rz - LRy + LR, +LyL5Ry)
€413= |—3(|—§R1 + L§R3 + L LRy — LR, + L L5Ry)
€4,21= _Ll(LgRl + L:ZJ,Rz —LLRy + LR, + L L5Ry)
84,22 = Ly (LR, + LIRy + L3R, + L3R, +2L, L3R, )
€4,23= Ls(L%Rz + LfR3 + L LR + L LR, — L L5Ry)
€431= |—1('—% R+ |-?é Rs + L LR — LiLsR, + LyL5Ry)
€432 = Lo (iR, + LiR; + L4 L Ry + Ly LsRy — Ly L5R))
€433 = Lg(LER, + L3R, + LZRy + L5R; + 2L, L3R;)
The solution of the equation (17a) for B =0 satisfies the condition
Iy (tf) i;(0)
i, (t;) |=e%"|iy(0) [eImP (24)
i5(ts) i3(0)

Therefore, the descriptor electrical circuit is pointwise complete.

From the above considerations we have the following conclusion.

Conclusion 1. In descriptor linear electrical circuit for B=0 by suitable choice of initial
conditions (currents in coils and voltages on capacitors) belonging to ImP it is possible to obtain
in a given time t; the desired values of currents in coils and voltages on capacitors belonging also

to ImP.

3.2 DISCRETE-TIME SYSTEMS
Definition 3. The descriptor discrete-time linear system (9) is called pointwise complete for

i=q if for every final state X, €R" there exists an initial condition X, € IMP such that

Xq =Xt €lmP

Theorem 5. The descriptor discrete-time linear system (9) is not pointwise complete for any
i=q and every X;.

12



JAEEE Volume$5, Issue 1/2023

Proof. From (12) for i =q we have X, =QY%,. Hence for given Xq itis possible to find X, if

and only if detQ 0. Note that detQ =detAdetEP =0 since detE® =0 for any singular
matrix E [8]. O

Now we shall show that by Euler type discretization from pointwise complete continuous-time
system (1) we obtain corresponding discrete-time system (9) which is not pointwise complete for
any i=q.

Let x; = x(ih), i=0,,..., h>0 and

Xiz1 — X

Then from (1) and (25) we have
Xier =Xi _ ay

E = Ax;, i—01.. (26)
and

Exiy =(E+hA)X, i=04,.., (27)
Note that

det[Ec, — (E +hA)]= de{h(E -1 Aﬂ =h"det[Ec, — A]#0
(28)
-1

forh>0andc, =

ifand only if def{Ec, — A]=0.

Therefore, the pencil of the corresponding discrete-time system (27) is regular if and only if the
pencil of the continuous-time system (1) is regular.

By Theorem 4 the descriptor continuous-time system (1) is pointwise complete and the
corresponding discrete-time system (27) by Theorem 5 is not pointwise complete. Therefore, we
have the following theorem.

Theorem 6. The system obtained by the discretization of continuous-time system is always not
pointwise complete.

4 POINTWISE DEGENERACY OF DESCRIPTOR LINEAR SYSTEMS

In this section conditions for the pointwise degeneracy of descriptor continuous-time and
discrete-time linear systems will be established.

4.1  CONTINUOUS-TIME SYSTEMS
Definition 3. The descriptor continuous-time linear system (1) is called pointwise degenerated
inthe direction v e R" for t =t; if there exists nonzero vector V such that for all initial conditions

x(0) € ImP, the solution of (1) satisfies the condition
vix; =0, (29)

13
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where X; =X(t;).
Theorem 7. The descriptor continuous-time linear system (1) is not pointwise degenerated in
any nonzero direction v e R" for all nonzero initial conditions x(0) € ImP.

Proof. Note that dete® 20 for any matrix Q=AE®P and all t;. Substitution of
Xy =g x(0) into vTxf yields

vx; =vTe x(0) %0 (30)

for all nonzero initial conditions x(0) e ImP. o

Example 1. (Continuation of Example 1).
Consider the descriptor linear electrical circuit shown in Figure 1 with given the resistances,
inductances and source voltages. The electrical circuit is described by the equation (17).
The matrix (23) of the descriptor electrical circuit is singular since
detQ=0 (31)
but the matrix thf is nonsingular.
Therefore, by Theorem 7 the descriptor electrical circuit is not pointwise degenerated in any

nonzero direction v e R° for all nonzero initial conditions.

4.2  DISCRETE-TIME SYSTEMS
Definition 4. The descriptor discrete-time linear system (9) is called pointwise degenerated in
the direction veR" for i=q; if there exists nonzero vector V such that for all initial conditions
Xo € IMP, the solution of (9) satisfies the condition
v X, =0. (32)
Theorem 8. The descriptor discrete-time linear system (9) is pointwise degenerated in the

direction veR" if and only if
detQ =0. (33)

Proof. Note that VTQ =0 ifand only if (33) holds. In this case
VX, =vTQ%%, =0 forall X, €P. (34)
Therefore, the descriptor system (9) is pointwise degenerated in the direction veR" if and
only if the condition (33) is satisfied. O
5 FRACTIONAL DESCRIPTOR LINEAR SYSTEMS AND ELECTRICAL CIRCUITS

Consider the fractional descriptor continuous-time linear system
d“x(t)

tlZ

E = Ax(t), O<a<], (35a)

where X(t) e R", u(t) e R" are the state and input and E, Ae R™",

14
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o to.
A% __1 | X gr, x(ry = 2@ (35b)
dt* F(l—a)o(t_f)“ dr
is the Caputo fractional derivative and
r(2) = [t e 'dt, Re(2)>0 (35¢)
0

is the gamma function [6, 8, 9].
It is assumed that detE =0 and the pencil (E, A) is regular, i.e. the condition (2) is satisfied.
In a similar way as for standard systems we may defined for the fractional system (35) the

matrices (3b), the Drazin inverse matrix EP satisfying (4) and the matrices (6).
By Theorem 1 the matrices P and Q satisfy the conditions (7).

Theorem 9. The solution of the equation (35a) has the from
X(t) = ¢ ()x(0) (36a)

where

2 Aktke -
¢0(t)_ém, A=EPA, x(0)eImP (36b)

Proof. Premultiplying the equation

(o4
E4X _ Ay (37)
dt®
by the matrix EP and taking into account (7d) we obtain
dx
=QXx (38a)
dt®
where
Q=EPA (38b)

Therefore, the solution of the equation (38a) has the form (36a). o
Definition 5. The descriptor fractional linear system (35) is called pointwise complete for t =t;

if for final state X; = X(t; ) € R" there exists an initial condition x(0) € ImP such that
where P is defined by (6a).

Theorem 10. The descriptor system (35) is pointwise complete for t =t; and every X; € R"
if and only if the matrix ¢, (t) is invertible for t; .
Proof. If the matrix ¢, (t) is invertible then from (36a) for t =t; we have
X(0) = gy (t )X - (40)
Therefore, for every X; there exists x(0) € ImP suchthat X; =X(t;) ifand only if the matrix

15
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isinvertible for t =t; . o

Definition 6.The descriptor fractional linear system (35) is called pointwise degenerated in the
direction veR" for t=t; if there exists a non zero vector veR" such that for all initial

conditions x(0) e ImP for t =t; satisfies the condition
vix; =0 (41)
where X; =x(t;).

Theorem 11. The descriptor fractional linear system (35) is pointwise degenerated in the
direction veR" for all nonzero initial conditions x(0) € ImP if and only if

detgy (t;) =0, (42)
where ¢, (t) is defined by (36b).
Proof. Using (36a) for t =t; we obtain

vIxe =V gy (t;)x(0)=0 (43)

for nonzero x(0) € ImP if and only if the condition (41) is satisfied. o
Example 3. Consider the descriptor linear electrical circuit shown in Figure 2 with given
resistances R;, R,, Rj, inductances L, L,, Lj,capacitance C and source voltages €;, €.

Fig. 2. Electrical circuit

Using Kirchhoff's laws we may write the equations

. di . d“i
e =Ri +L —2—-R,,— s
1 1'1 leta 3'3 LGdta
. di . di
e,=Rji,+L —2+Rji,+L,—,
2 212 deta 313 3dta (44)
e +e,=Uu,
i, =i, +i,.

The equations (44) can be written in the form

16



JAEEE Volume$5, Issue 1/2023

Il Il
i i e
e I\ +B{ } (@5a)
dt” | i, i e,
u u
where
L 0 -L 0
e |0k Lo
0 O 0 O
0 O 0 O )
45
-R, 0 R O 10 (450)
0 -R, -R, 0 01
A= , B= .
-1 1 0 00
0 0 0o -1 11
The condition (2) is satisfied since detE =0 and
s“L + R, 0 —-s‘L,—-R, 0O
0 s’L,+R, s“ R, 0
det[Es” — A] = R STL AR
-1 1 -1 0
0 0 0 1 (46)

= {IL(L + L) + LLIs +[R(L, + L) + Ry(L + L) + Ry(L, + L,)]s"
+R, (R, + R;) + R,R.}.

Note that the matrix A defined by (45b) is nonsingular and we may choose in (2) s = 0. In this
case we have

L(R,+R) LR, -LLR, 0
E:[_A]—lE _ 1 L1R3 I-z(R1+R3) |-3R1 0 ,
Rl(R2+ R3)+ R2R3 _L1R2 L2R1 Ls(R1+R2) 0 (47)
0 0 0 0
A=[-AI"A=-I,
and

ed A1 ed 12 ed 13
b _|Cazr Cuz Cuos 1

e e e 0|A%’ (48)

d,31 d,32 d,33 L

mj
|
|

17
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L(L+L)  LL LL, 0
poger.| bk LG+l Lk o)1 -
-LL, LL  L(L+L) 0[A,
0 0 0 0
Q=AE"=-E° (50)
where
s = L(BR + L3R, + R, + LR, + 2L, L,R))
&1, = L(LR, + 2R, ~ LR, + LLRR, + LLLR)
€15 = ~Ly(LR + 2Ry + LR, — LR, + L,LR) »
€ = L(LR + %R, ~ LR, + LLR, + LR
€22 = L (LR, + LRy + iR + iR, + 2L LR,)
€2 = L(LR, + LRy + LL,R, + LLR, ~LLR)»
€ n=-L (LR + LR, + LLR, ~LLR, + LLR),
&5 = L(LR, + iR, + LLR, + LLR, - LLLR)
€13 = L(LR, + 3R + LR, + L3R, + 2L L,R,) -
The solution of the equation (45a) satisfies the conditions of Theorem 10 and
iy (t;) i,(0)
()| & Qt |i,(0
ig(ti) B Z% iioi €imP (51)
u(t,) u(0)

Therefore, by Theorem 11 the fractional descriptor electrical circuit is pointwise complete.

6  CONCLUDING REMARKS

The Drazin inverse of matrices has been applied to analysis of the pointwise completeness and
the pointwise degeneracy of the descriptor linear continuous-time and discrete-time systems. It
has been shown that: 1) The descriptor linear continuous-time system is pointwise complete if and
only if the initial and final states belong to the same subspace (Theorem 4). 2) The descriptor linear
discrete-time system is not pointwise complete if its system matrix is singular (Theorem 5). 3) The
system obtained by discretization of continuous-time system is always not pointwise complete
(Theorem 6). 4) The descriptor linear continuous-time system is not degenerated in any nonzero
direction for all nonzero initial conditions (Theorem 7). 5) The descriptor fractional system is
pointwise complete if the matrix defined by (36) is invertible (Theorem 10). 6) The descriptor
fractional system is pointwise degenerated if and only if the condition (43) is satisfied (Theorem
11). Considerations have been illustrated by examples of descriptor linear electrical circuits. The
considerations can be easily extended to fractional descriptor discrete-time linear systems.
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