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Abstract  The Drazin inverse of matrices is applied to analysis of the pointwise completeness 
and the pointwise degeneracy of the descriptor  standard and fractional linear continuous-time 
and discrete-time systems. It is shown that: 1) The descriptor linear continuous-time system is 
pointwise complete if and only if the initial and final states belong to the same subspace. 2) The 
descriptor linear discrete-time system is not pointwise complete if its system matrix is singular. 
3) System obtained by discretization of continuous-time system is always not pointwise 
complete. 4) The descriptor linear continuous-time system is not pointwise degenerated in any 
nonzero direction for all nonzero initial conditions. 5) The descriptor fractional system is 
pointwise complete if the matrix defined by (36) is invertible. 6) The descriptor fractional 
system is pointwise degenerated if and only if the condition (41) is satisfied. Considerations are 
illustrated by examples of descriptor linear electrical circuits. 

Key words  descriptor, fractional, linear, electrical circuit, Drazin inverse. 

 

1 INTRODUCTION 

A dynamical system described by homogenous equation is called pointwise complete if every 
final state of the system can be reached by suitable choice of its initial state. A system, which is not 
pointwise complete is called pointwise degenerated. The pointwise completeness and pointwise 
degeneracy of linear continuous-time systems with delays have been investigated in [2, 3, 8, 10, 
12], the pointwise completeness of linear discrete-time cone systems with delays in [13] and of 
fractional linear systems in [1, 6-8]. The pointwise completeness and pointwise degeneracy of 
standard and positive hybrid systems described by the general model have been analyzed in [4] 
and of positive linear systems with state-feedbacks in [5]. Mathematical fundamentals of the 
fractional calculus are given in the monographs [9, 11]. 

In this paper the Drazin inverse of matrices will be applied to analysis of the pointwise 
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completeness and the pointwise degeneracy of the descriptor linear continuous-time and discrete-
time systems. 

The paper is organized as follows. In section 2 the basic definitions and theorems concerning 
descriptor linear continuous-time and discrete-time systems and the Drazin inverse of matrices are 
recalled. The pointwise completeness of descriptor linear continuous-time and discrete-time 
systems is investigated in section3 and the pointwise degeneracy in section 4. In section 5 the 
considerations have been extended to fractional descriptor linear continuous-time systems. 
Concluding remarks are given in section 6. The considerations are illustrated by examples of the 
linear electrical circuits. 

The following notation will be used:   - the set of real numbers, mn  - the set of mn  

real matrices, mn

  - the set of mn  real matrices with nonnegative entries and 

 1

  nn , nI  - the nn  identity matrix. ImP is the image of the operator(matrix) P. 

2 AUTONOMOUS DESCRIPTOR LINEAR SYSTEMS AND THEIR SOLUTIONS 

Consider the autonomous descriptor continuous-time linear system 

,AxxE 
 dt

dx
x   (1) 

 

where ntxx  )(  is the state vector and ., nnAE   

It is assumed that 0det E  but the pencil ),( AE  is regular, i.e. 

0]det[  AEs  for some Cs  (the field of complex numbers). (2) 

 

Assuming that for c 0]det[  AEc  and premultiplying (1) by 
1][  AEc  we obtain 

,xAxE   (3a) 

where 

,][ 1EAEcE  AAEcA 1][  . (3b) 

 
The equations (1) and (3a) have the same solution .x  

Definition 1. A matrix nqDE   is called the Drazin inverse of E  if it satisfies the conditions 

EEEE DD  , (4a) 

 
DDD EEEE  , (4b) 

 
qqD EEE 1 , (4c) 

 
where q  is the index of E  defined as the smallest nonnegative integer satisfying the condition 
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1rankrank  qq EE . (5) 

Theorem 1. Let 
DEEP  , (6a) 

 

DEAQ   (6b) 

Then 

PPk   for ,...3,2k  (7a) 

 

QQPPQ  , (7b) 

 
DD EEP  , (7c) 

 

xPx  . (7d) 

Proof is given in [8]. 
Theorem 2. The solution of the equation (3a) has the form 

wEEetx DtEA)( , (8) 

 

where nw   is any vector and .ImIm)0( PEEx D   

Proof is given in [8]. 
Consider the autonomous descriptor discrete-time linear system 

,1 ii AxEx  ,...1,0i  (9) 

 

where n
ix   is the state vector and ., nnAE   

It is assumed that 0det E  and  

0]det[  AEz  for some Cz  (10) 

 

Choosing c  such that 0]det[  AEc  and premultiplying (9) by 
1][  AEc  we obtain 

,1 ii xAxE   (11) 

 

where E  and A  defined by (3b). 
Theorem 1 is also valid for the discrete-time systems. 

Using the Drazin inverse DE  of the matrix E  we may find the solution ix  of the equation (11) 

by the use of the following Theorem. 
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Theorem 3. The solution of the equation (11) has the form 

,][ 0xQEvEAEx iDi
i  ,...2,1i  (12) 

where nv   is any vector and ,ImIm0 PEEx D   the matrices P  and Q  are defined by 

(6). 
Proof is given in [8]. 

3 POINTWISE COMPLETENESS OF DESCRIPTOR LINEAR SYSTEMS 

In this section conditions for the pointwise completeness of descriptor continuous-time and 
discrete-time linear systems will be established. 

3.1 CONTINUOUS-TIME SYSTEMS 

Definition 2. The descriptor continuous-time linear system (1) is called pointwise complete for 

ftt   if for final state n
ff txx  )(  there exists an initial condition Px Im)0(   such that  

Ptxx ff Im)(   (14) 

 
where P  is defined by (6a). 

Theorem 4. The descriptor system (1) is pointwise complete for any ftt   and every 

n

fx   if and only if the condition (14) is satisfied. 

Proof. Note that 0det Qte  and QtQt ee  1][  for any .t  From (8) for ftt   we have 

f

Qt
xex f

)0(  (15) 

 

Therefore, for every fx  there exists Px Im)0(   such that )( ff txx  . □ 

Example 1. Consider the descriptor linear electrical circuit shown in Figure 1 with given 

resistances ,1R ,2R ,3R  inductances ,1L ,2L 3L  and source voltages ,1e .2e  

 

Fig. 1. Electrical circuit 

 
Using Kirchhoff’s laws we may write the equations 
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(16) 

 
which can be written in the form 
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
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
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

00

10
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B  (17b) 

 

The assumption (2) for the electrical circuit is satisfied, since the matrix E  is singular 

)0(det E  and  

32321213312321

2
323213322

3311

)()]()()([

])([

111

0

0

]det[

RRRRRsLLRLLRLLR

sLLLLLRsLRsL

RsLRsL

AEs












 (18) 

 
Therefore, the electrical circuit is a descriptor linear continuous-time system. 

Note that the matrix A  defined by (17b) is nonsingular and we may choose in (2) .0s  In this 

case we obtain 
























 

)(

)(

)(

)(

1
][

2131221

1321231

2332321

32321

1

RRLRLRL

RLRRLRL

RLRLRRL

RRRRR
EAE  (19) 

 

3
1][ IAAA  

 (20) 

and 

2

33,32,31,

23,22,21,

13,1,11,
1

L
ddd

ddd

ddd

D

eee

eee

eee

E

















  (21) 
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2

2132121

3131231

3232321
1

)(

)(

)(

L

D

LLLLLLL
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EEP
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






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

 

(22) 

 
DD EEAQ   (23) 

where  

)2( 1322
2
33

2
21

2
31

2
2111, RLLRLRLRLRLLed  ,  

)( 1322313212
2
31

2
3212, RLLRLLRLLRLRLLed 

 

)( 1322313213
2
21

2
2313, RLLRLLRLLRLRLLed 

 

)( 1322313212
2
31

2
3121, RLLRLLRLLRLRLLed 

 

)2( 2312
2
31

2
33

2
12

2
1222, RLLRLRLRLRLLed 

 

)( 1322313213
2
12

2
1323, RLLRLLRLLRLRLLed 

 

)( 1322313213
2
21

2
2131, RLLRLLRLLRLRLLed 

 

)( 1322313213
2
12

2
1232, RLLRLLRLLRLRLLed 

 

)2( 3313
2
23

2
11

2
22

2
1333, RLLRLRLRLRLLed 

 

32321 )( LLLLLL  . 

The solution of the equation (17a) for 0B  satisfies the condition 

P

i

i

i

e

ti

ti

ti
fQt

f

f

f

Im

)0(

)0(

)0(

)(

)(

)(

3

2

1

3

2

1





































 (24) 

 
Therefore, the descriptor electrical circuit is pointwise complete.  
From the above considerations we have the following conclusion. 

Conclusion 1. In descriptor linear electrical circuit for 0B  by suitable choice of initial 

conditions (currents in coils and voltages on capacitors) belonging to PIm  it is possible to obtain 

in a given time ft  the desired values of currents in coils and voltages on capacitors belonging also 

to .Im P  

3.2 DISCRETE-TIME SYSTEMS 

Definition 3. The descriptor discrete-time linear system (9) is called pointwise complete for 

qi   if for every final state n
qx   there exists an initial condition Px Im0   such that 

Pxx fq Im  

Theorem 5. The descriptor discrete-time linear system (9) is not pointwise complete for any 

qi   and every .fx  
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Proof. From (12) for qi   we have .0xQx q
q   Hence for given qx  it is possible to find 0x  if 

and only if .0det Q Note that 0detdetdet  DEAQ  since 0det DE  for any singular 

matrix E  [8]. □ 
Now we shall show that by Euler type discretization from pointwise complete continuous-time 

system (1) we obtain corresponding discrete-time system (9) which is not pointwise complete for 
any .qi   

Let ),(ihxxi  ,...,1,0i 0h  and 

h

xx
tx ii 
 1)(

 
(25) 

Then from (1) and (25) we have 

,1
i

ii Ax
h

xx
E 



,...,1,0i  
(26) 

and 

,)(1 ii xhAEEx  ,...,1,0i  (27) 

Note that 

    

h

c
ch

AEchA
h

c
EhhAEEc n

1
and0for

0det
1

detdet

1
2

2
1

1

























 

(28) 

 

if and only if   .0det 2  AEc  

Therefore, the pencil of the corresponding discrete-time system (27) is regular if and only if the 
pencil of the continuous-time system (1) is regular. 

By Theorem 4 the descriptor continuous-time system (1) is pointwise complete and the 
corresponding discrete-time system (27) by Theorem 5 is not pointwise complete. Therefore, we 
have the following theorem. 

Theorem 6. The system obtained by the discretization of continuous-time system is always not 
pointwise complete. 

4 POINTWISE DEGENERACY OF DESCRIPTOR LINEAR SYSTEMS  

In this section conditions for the pointwise degeneracy of descriptor continuous-time and 
discrete-time linear systems will be established. 

 

4.1 CONTINUOUS-TIME SYSTEMS 

Definition 3. The descriptor continuous-time linear system (1) is called pointwise degenerated 

in the direction nv   for ftt   if there exists nonzero vector v  such that for all initial conditions 

,Im)0( Px   the solution of (1) satisfies the condition 

,0f
T xv  (29) 
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where ).( ff txx   

Theorem 7. The descriptor continuous-time linear system (1) is not pointwise degenerated in 

any nonzero direction nv   for all nonzero initial conditions .Im)0( Px   

Proof. Note that 0det fQt
e  for any matrix DEAQ   and all .ft  Substitution of 

)0(xex fQt

f   into f
T xv  yields 

0)0(  xevxv fQtT
f

T
 (30) 

 
for all nonzero initial conditions .Im)0( Px   

□ 

Example 1. (Continuation of Example 1). 
Consider the descriptor linear electrical circuit shown in Figure 1 with given the resistances, 

inductances and source voltages. The electrical circuit is described by the equation (17). 
The matrix (23) of the descriptor electrical circuit is singular since 

0det Q  (31) 

but the matrix fQt
e  is nonsingular. 

Therefore, by Theorem 7 the descriptor electrical circuit is not pointwise degenerated in any 

nonzero direction 3v  for all nonzero initial conditions. 

4.2 DISCRETE-TIME SYSTEMS 

Definition 4. The descriptor discrete-time linear system (9) is called pointwise degenerated in 

the direction nv   for fqi   if there exists nonzero vector v  such that for all initial conditions 

,Im0 Px   the solution of (9) satisfies the condition 

.0q
T xv  (32) 

Theorem 8. The descriptor discrete-time linear system (9) is pointwise degenerated in the 

direction nv   if and only if 
.0det Q  (33) 

Proof. Note that 0QvT  if and only if (33) holds. In this case 

00  xQvxv qT
q

T   for all .0 Px   (34) 

Therefore, the descriptor system (9) is pointwise degenerated in the direction nv   if and 

only if the condition (33) is satisfied. □ 

5 FRACTIONAL DESCRIPTOR LINEAR SYSTEMS AND ELECTRICAL CIRCUITS 

Consider the fractional descriptor continuous-time linear system 

),(
)(

tAx
dt

txd
E 





 ,10   (35a) 

where ntx )( , mtu )( are the state and input and nnAE , ,  
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,
)(

)(

)1(

1)(

0






t

d
t

x

dt

txd






 

 






d

dx
x

)(
)(   (35b) 

is the Caputo fractional derivative and 






0

1)( dtetz tz , 0)Re( z  (35c) 

is the gamma function [6, 8, 9]. 

It is assumed that 0det E  and the pencil ),( AE  is regular, i.e. the condition (2) is satisfied. 

In a similar way as for standard systems we may defined for the fractional system (35) the 

matrices (3b), the Drazin inverse matrix DE  satisfying (4) and the matrices (6). 
By Theorem 1 the matrices P  and Q  satisfy the conditions (7). 

Theorem 9. The solution of the equation (35a) has the from 

)0()()( 0 xttx   (36a) 

where 

,
])1[(

ˆ
)(

0

0 






k

kk

k

tA
t






 ,ˆ AEA D  Px Im)0(   (36b) 

 
Proof. Premultiplying the equation 

xA
dt

xd
E 





 (37) 

by the matrix DE  and taking into account (7d) we obtain 

Qx
dt

xd






 (38a) 

where 

AEQ D  (38b) 

 
Therefore, the solution of the equation (38a) has the form (36a). □ 

Definition 5. The descriptor  fractional linear system (35) is called pointwise complete for ftt   

if for final state n
ff txx  )(  there exists an initial condition Px Im)0(   such that  

Ptxx ff Im)(   (39) 

where P  is defined by (6a). 

Theorem 10. The descriptor system (35) is pointwise complete for ftt   and every n
fx   

if and only if the matrix )(0 t  is invertible for ft . 

Proof. If the matrix )(0 t  is invertible then from (36a) for ftt   we have 

.)()0( 1
0 ff xtx   (40) 

Therefore, for every fx  there exists Px Im)0(   such that )( ff txx   if and only if the matrix 
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is invertible for ftt  . □ 

Definition 6.The descriptor fractional linear system (35) is called pointwise degenerated in the 

direction nv   for ftt   if there exists a non zero vector nv   such that for all initial 

conditions Px Im)0(   for ftt   satisfies the condition 

0f
T xv  (41) 

where )( ff txx  . 

Theorem 11. The descriptor fractional linear system (35) is pointwise degenerated in the 

direction nv   for all nonzero initial conditions Px Im)0(   if and only if 

,0)(det 0 ft  (42) 

where )(0 t  is defined by (36b). 

Proof. Using (36a) for ftt   we obtain 

0)0()(0  xtvxv f
T

f
T   (43) 

 
for nonzero Px Im)0(   if and only if the condition (41) is satisfied. □ 

Example 3. Consider the descriptor linear electrical circuit shown in Figure 2 with given 

resistances ,1R  ,2R  ,3R  inductances ,1L  ,2L  3L , capacitance C  and source voltages ,1e  .2e  

 

 

Fig. 2. Electrical circuit 

 
Using Kirchhoff’s laws we may write the equations 

1 3
1 1 1 1 3 3 3

2 3
2 2 2 2 3 3 3

1 2

2 1 3

,

,

,

.

d i d i
e R i L R i L

dt dt

d i d i
e R i L R i L

dt dt

e e u

i i i

 

 

 

 

   

   

 

 
 

(44) 

The equations (44) can be written in the form 
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1 1

12 2

23 3

,

i i

ei id
E A B

ei idt

u u





   
   

       
     
   
     

(45a) 

where 

1 3

2 3

1 3

2 3

0 0

0 0
,

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1
,   .

1 1 1 0 0 0

0 0 0 1 1 1

L L

L L
E

R R

R R
A B

 
 
 
 
 
 

   
    
    

   
   

     

(45b) 

 
The condition (2) is satisfied since detE = 0 and 

1 1 3 3

2 2 3 3

2

1 2 3 2 3 1 2 3 2 1 3 3 1 2

1 2 3 2 3

0 0

0 0
det[ ]

1 1 1 0

0 0 0 1

{[ ( ) ] [ ( ) ( ) ( )]
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s L R s L R

s L R s L R
Es A

L L L L L s R L L R L L R L L s
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 

 


 

   
 

   
  
 
 

         

  

 

(46) 

 
Note that the matrix A defined by (45b) is nonsingular and we may choose in (2) s = 0. In this 

case we have 

1 2 3 2 3 3 2

1 3 2 1 3 3 11

1 2 2 1 3 1 21 2 3 2 3

1

4

( ) 0

( ) 01
[ ] ,

( ) 0( )

0 0 0 0

[ ]

L R R L R L R

L R L R R L R
E A E

L R L R L R RR R R R R

A A A I





  
 
   

   
 
 

   
 

(47) 

 
and 

,11 ,12 ,13

,21 ,22 ,23

2

,31 ,32 ,33

0

0 1
,

0

0 0 0 0

d d d

d d dD

d d d L

e e e

e e e
E

e e e

 
 
 
  
 
   

(48) 
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1 2 3 2 3 2 3

1 3 2 1 3 1 3

1 2 1 2 3 1 2

( ) 0

( ) 0 1
,

( ) 0

0 0 0 0

D

L

L L L L L L L

L L L L L L L
P EE

L L L L L L L

  
 
  

   
 
   

(49) 

 
D DQ AE E   , (50) 

where 
2 2 2 2

,11 1 2 1 3 1 2 3 3 2 2 3 1( 2 )de L L R L R L R L R L L R     , 

2 2

,12 2 3 1 3 2 1 2 3 1 3 2 2 3 1( )de L L R L R L L R L L R L L R     , 

2 2

,13 3 2 1 2 3 1 2 3 1 3 2 2 3 1( )de L L R L R L L R L L R L L R      , 

2 2

,21 1 3 1 3 2 1 2 3 1 3 2 2 3 1( )de L L R L R L L R L L R L L R     , 

2 2 2 2

,22 2 1 2 1 3 3 1 3 2 1 3 2( 2 )de L L R L R L R L R L L R     , 

2 2

,23 3 1 2 1 3 1 2 3 1 3 2 2 3 1( )de L L R L R L L R L L R L L R     , 

2 2

,31 1 2 1 2 3 1 2 3 1 3 2 2 3 1( )de L L R L R L L R L L R L L R      , 

2 2

,32 2 1 2 1 3 1 2 3 1 3 2 2 3 1( )de L L R L R L L R L L R L L R     , 

2 2 2 2

,33 3 1 2 2 1 1 3 2 3 1 2 3( 2 )de L L R L R L R L R L L R     . 

 
The solution of the equation (45a) satisfies the conditions of Theorem 10 and 

1 1

2 2

3 0 3

( ) (0)

( ) (0)
Im

( ) (0)[( 1) ]

( ) (0)

f

k k
f f

f k

f

i t i

i t iQ t
P

i t ik

u t u









   
   
    
    
   

  



. 

(51) 

 
Therefore, by Theorem 11 the fractional descriptor electrical circuit is pointwise complete. 

6 CONCLUDING REMARKS 

The Drazin inverse of matrices has been applied to analysis of the pointwise completeness and 
the pointwise degeneracy of the descriptor linear continuous-time and discrete-time systems. It 
has been shown that: 1) The descriptor linear continuous-time system is pointwise complete if and 
only if the initial and final states belong to the same subspace (Theorem 4). 2) The descriptor linear 
discrete-time system is not pointwise complete if its system matrix is singular (Theorem 5). 3) The 
system obtained by discretization of continuous-time system is always not pointwise complete  
(Theorem 6). 4) The descriptor linear continuous-time system is not degenerated in any nonzero 
direction for all nonzero initial conditions (Theorem 7). 5) The descriptor fractional system is 
pointwise complete if the matrix defined by (36) is invertible (Theorem 10). 6) The descriptor 
fractional system is pointwise degenerated if and only if the condition (43) is satisfied (Theorem 
11). Considerations have been illustrated by examples of descriptor linear electrical circuits. The 
considerations can be easily extended to fractional descriptor discrete-time linear systems. 



JAEEE Volume 5, Issue 1 / 2023 

19 

ACKNOWLEDGMENT 

This work was supported by National Science Centre in Poland under work 
No. 2022/45/B/ST7/03076. 

BIBLIOGRAPHY 

[1] Busłowicz M., Pointwise completeness and pointwise degeneracy of linear discrete-time 
systems of fractional order. Zeszyty Naukowe Pol. Sląskiej, Automatyka, no. 151, 2008, pp. 
19-24. 

[2] Busłowicz M., Kociszewski R., Trzasko W., Pointwise completeness and pointwise degeneracy 
of positive discrete-time systems with delays. Zeszyty Naukowe Pol. Sląskiej, Automatyka, no. 
151, 2008, pp. 55-56. 

[3] Choundhury A.K., Necessary and sufficient conditions of pointwise completeness of linear 
time-invariant delay-differential systems. Int. J. Control, vol. 16, no. 6, 1972, pp. 1083-1100. 

[4] Kaczorek T., Pointwise completeness and pointwise degeneracy of standard and positive 
hydrid linear systems described by the general model. Archives of Control Sciences, vol. 2, 
2010, pp. 121-131. 

[5] Kaczorek T., Pointwise completeness and pointwise degeneracy of standard and positive 
linear systems with state-feedbacks. Journal of Automation,Mobile Robotics and Ingelligent 
Systems, vol. 4, no. 1, 2010, pp. 3-7. 

[6] Kaczorek T., Selected Problems of Fractional Systems Theory, Springer,Berlin 2011. 
[7] Kaczorek T. and Busłowicz M., Pointwise completeness and pointwise degeneracy of linear 

continuous-time fractional order systems, Journal of Automation, Mobile Robotics and 
Intelligent Systems, vol. 3, no. 1, 2009, pp. 8-11. 

[8] Kaczorek T. and Rogowski K., Fractional Linear Systems and Electrical Circuits, Springer 2015. 
[9] Kilbas A.A., Srivastava H.M.,Trujilio J.J. Theory on Applications of Fractional Differential 

Equations, Elsevier, Amsterdam 2006. 
[10] Olbrot A., On degeneracy and related problems for linear constant time-lag systems, Ricerche 

di Automatica, vol. 3, no. 3, 1972, pp. 203-220. 
[11] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999 
[12] Popov V.M., Pointwise degeneracy of linear time-invariant delay-differential equations, 

Journal of Differential Equation, vol. 11, 1972, pp. 541-561. 
[13] Trzasko W., Busłowicz M. and Kaczorek T., Pointwise completeness of discrete-time cone-

systems with delays. Int. Proc. EUROCON 2007, Warsaw, pp. 606-611. 


