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Abstract  The article presents four main chapters that allow you to formulate an optimization task and choose a method for 
solving it from static and dynamic optimization methods to single-criterion and multi-criteria optimization. In the group of static 
optimization methods, the methods are without constraints and with constraints, gradient and non-gradient and heuristic. 
Dynamic optimization methods are divided into basic - direct and indirect and special. Particular attention has been paid to multi-
criteria optimization in single-object approach as static and dynamic optimization, and multi-object optimization in game control 
scenarios. The article shows not only the classic optimization methods that were developed many years ago, but also the latest in 
the field, including, but not limited to, particle swarms. 
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INTRODUCTION 
The main goal of optimization is to implement the 

object control process in the best way. The process can 
be physical phenomenon, technological process, 
technical object, economic system, production and 
transport planning, etc. The mathematical description 
of the process formulated for the purposes of its 
optimization is its model. Optimization is as good as the 
mathematical model is adequate (Fig. 1). 

The function F(x) means the assessment of the 
quality of the object's operation or the course of the 
control process and takes the name of the function of 
the control purpose or control quality index, and x are 
the decision variables or variables of the control 
process state [1-3]. 

The optimization task consists in determining the values 
of state variables x* at which the control goal function F*(x*) 
takes the minimum or maximum value [4-6]. 

The values of the components of the state vector x 
cannot be arbitrary and are subject to various restrictions.1 
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Fig. 1. Stages of formulating and solving the optimization 
task 

I. FORMULATION OF THE TASK OF OPTIMIZATION 
A distinction is made between inequality and equality: 
                           mjxg j ,...,2,1,0)(                      (1) 

         rlxhl ...,,2,1,0)(                    (2) 
The introduction of any equality constraint reduces the size 
of the optimization space by one and may result in the lack 
of an optimal solution. 
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The set of elements of the optimization space satisfying 
the equation of constraints is called the set of acceptable 
solutions D: 

}0)(,0)(:{  xhxgxD lj
               (3) 

The presence of inequality constraints may be the 
reason why the optimum task does not belong to the set of 
acceptable solutions. 

A general breakdown of optimization methods 
considered the most representative is shown in Figure 2 

Fig. 2. Categorization of optimization methods 

There is a general distinction between static and dynamic 
optimization tasks. For the synthesis of the optimal 
controller or the optimal control algorithm for a given object, 
both static and dynamic optimization methods are used. 

In general, each maximization task can be formally 
reduced to a minimization task, and vice versa, by the 
relationship: 

                          maxF(x)min[F(x)]                               (4) 
The task of static optimization is to look for the 

minimum or maximum output size of the object or its 
function: 

                                       F = f(x)                                               (5) 
while meeting the constraints on the variables x. 

The task of dynamic optimization is to look for the 
minimum or maximum functional as integral of the function: 

         dttuxfF o ),,(                             (6) 

where the dynamic properties of the control object are 
described by the state equations: 

                                                                              (7) 
                                    y w(x,u,t)                                         (8) 

and meeting the constraints on state variables x and control 
quantities u. The object or control process described by the 
state equations and output can be presented as in Figure 3. 

Fig. 3. Optimal control object 

At the same time, state variables and their subsequent 
derivatives are usually taken as the output quantities of the 
object.  

In practice, optimal control of an object or a 
technological process is implemented in a closed system by 
an optimal controller or an optimal control algorithm stored 
in the memory of a microcontroller or a microprocessor-

based PLC programmable controller (Programmable Logic 

Controller), shown in Figure 4. 
Fig. 4. Optimal control system 

II. STATIC OPTIMIZATION  
The static optimization task can be formulated as finding 

the optimal value of the x* variable that minimizes or 
maximizes the goal control function as an optimal control 
quality index F(x) in the form of a relationship: 
                                  F(x) = f(x)   for     x = x1, x2, …, xn.                                 (9) 
while meeting the system of equality and inequality 
constraints: 

mjbxg jj ...,,2,1,)( 



                  (10) 

Static optimization tasks can be divided into linear and 
nonlinear programming tasks. 
Linear programming task 
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Nonlinear programming tasks 
Case 1 
 F - nonlinear control purpose function, 
g - nonlinear equality constraints: 
                                              g

j
(x)b

j
                                           (13) 

as classic optimization problem solved by Lagrange method. 
Case 2 
F - nonlinear control purpose function, 
g - linear restrictions: 
F as an additive function: 
                F f(x
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F as the sum of the linear and quadratic forms constituting 
the task of quadratic programming: 
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F - nonlinear control purpose function, 
g - nonlinear restrictions: 
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II.1. Deterministic methods without constraints without 
gradient: 

1. The golden ratio method, 
2. Bisection method, 
3. Gauss-Seidel method, 
4. Branch and bound method, 
5. Branch and cut method, 
6. Hooke-Jeeves method, 
7. Square interpolation method, 
8. Nelder-Mead simplex method, 
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9. Rosenbrock method 
10. Davies-Swann-Campey method. 

II.2. Deterministic methods without constraints with 
gradient: 

1. Simple gradient method, 
2. The fastest fall method, 
3. Newton-Raphson method, 
4. Hestenes-Stiefel conjugate gradient method, 
5. Levenberg-Marquardt method, 
6. Powell method, 
7. Zangwill method. 

II.3. Deterministic methods with constraints without 
gradient: 

1. Lagrange’a method, 
2. Linear programming method (Tab. 1), 
Table 1. Example - Optimization of sea container transport 

Ship 
 

Port 

S1 S2 S3 S4       Containers 
    in 
 Port 

P1 
Lizbona   1800 

TEU  1800 
TEU 

P2 
Le Havre  1000 

TEU  1100 
TEU 

  2100 
TEU 

P3 
Bremerhaven 

2600 
TEU 

500 
TEU   3100 

TEU 

P4 
Gdańsk  1500 

TEU 
300 
TEU  1800 

TEU 

P5 
Sankt 

Petersburg 
 1200 

TEU   1200 
TEU 

 

Loading 
ship 

2600 
TEU 

4200 
TEU 

2100 
TEU 

1100 
TEU 

 

3. Quadratic programming method, 
4. Kuhn-Tucker method, 
5. Schmidt-Fox method. 

II.4. Deterministic methods with constraints with gradient: 

1. Zoutendijk method, 
2. Projected Rosen gradient method. 

II.5. Heuristics methods: 

1. Grouping method, 
2. Monte Carlo method, 
3. Simulated annealing method, 
4. Genetic algorithm, 
5. Search algorithm, 
6. The harmony algorithm, 
7. Particle swarm methods: 

a. Bird's algorithm - Particle Swarm Optimization PSO, 
b. Base Bees algorithm – BBA, 
c. Firefly algorithm – FA, 
d. Cuckoo Search - CS algorithm, 
e. Cockroach Swarm Optimization - CSO algorithm, 
f. Flower Pollination - FPA algorithm, 
g. Cuttlefish algorithm - CFA algorithm, 
h. Krill Herd - KH algorithm, 
i. Bat algorithm, 

j. Ant Colony Optimization – ACO algorithm (Fig. 5). 

Fig. 5. Determining ship’s safe trajectory in collision situation by 
ACO algorithm [7] 

III. DYNAMIC OPTIMIZATION  
The task of dynamic optimization is to look for the 

minimum or maximum functional as an integral of the 
function: 


kt

t
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),,(                               (17) 

The dynamic properties of the control object are described 
by the state and output equations: 

                                      (18) 

with state and control restrictions: 
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The tasks of dynamic optimization can be solved 
analytically as tasks of time-optimal control and minimizing 
the objective function in quadratic form, with linear state 
equations [8]. 

In contrast, various dynamic optimization tasks in 
practical applications are most often solved using 
appropriate numerical methods. 

Examples of dynamic optimization tasks in maritime 
transport: 
•       determining the optimal route of the ship from the initial 

port to the destination port ensuring minimum fuel 
consumption taking into account navigation restrictions 
and hydrometeorological forecasts, 

•        determining the optimal anti-collision maneuver of your 
own ship, ensuring the minimum risk of collision when 
passing encountered ships, 

 optimal ship control at a given course ensuring 
maximum accuracy and minimum control costs, 

 optimization of the ship's main engine control ensuring 
minimal fuel consumption, 

•       optimization of the ship loading ensuring maximum ship 
stability, 

 optimization of power distribution to ship propulsors 
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ensuring maximum ship control, 
•  optimization of the ship's power system ensuring 

maximum reliability of supplying the ship's equipment. 

III.1. Basic direct methods: 

1. Euler variation calculus method, 
2. Bellman's principle of optimality (Fig. 6), 

Fig. 6. Determining ship’s safe trajectory in collision situation by 
DYNAMIC PROGRAMMING algorithm 

3. Simple gradient method in the control space, 
4. Coupled gradient method in control space, 
5. Variable metric method, 
6. The second variation method. 

III.2. Basic indirect methods: 

1. The principle of maximum Pontriagin, 
2. Newton's method in the state space, 
3. Newton-Raphson method in conjugate space. 

III.3. Special methods: 

1. Neustadt time-optimal control method, 
2. Gilbert's method, 
3. Barr's method, 
4. Balakrishnan penalty functional method, 
5. Findeisen two-level optimization method. 

IV. MULTI-CRITERIA OPTIMIZATION 

IV.1. Static multi-criteria Pareto optimization 

The 80/20 rule, which has been known for a long time, 
says that 80% of the results are due to only 20% of reasons, 
in other words, more modest means and less effort can be 
achieved. The pattern underlying this principle was 
discovered in 1897 by the Italian economist Vilfred Pareto [9-
12]. 

The definition of the set of Pareto-optimal points in the 
space of variants can be expressed as follows: 

"A given variant is Pareto-optimal if none of its grades 
can be improved without deteriorating at least one of the 
others." 

The set of non-dominated solutions from the entire 

allowable search space is called the optimal set in the Pareto 
sense, and these solutions form the so-called Pareto front, 
solutions from this set are not dominated by any other, so in 
this sense they are optimal solutions for multi-criteria 
optimization problem. 

Because non-Pareto-optimal variants can be improved 
for all criteria, the introduction of the Pareto-optimal 
concept has reduced the problem of finding a solution to a 
task with multiple criteria for selecting a point from this set. 

However, the question remains whether we can clearly 
determine which Pareto-optimal point is the best. 
Philosophers and practitioners have worked on the answer 
to this question for many years.  
There are the following methods to solve this task: 
1. Bentham's utilitarianism principle, 
2. Rawls' principles of justice, 
3. Salukvadze reference point, 
4. Benson weighted sum method, 
5. Haimes-restrictions method, 
6. Goal programming method (Fig. 7).  

Fig. 7. Comparison of multi-criteria static optimization methods of 
the vessel traffic control process at the reference course: R – 
Restricted area, R – -Restrictions, GP – Goal Programming, RP – 
Reference Point, JP – Justice Principle, WS – Weighted Sum, UR – 
Utilitarianism Rule, O – Open sea 

IV.2. Dynamic multi-criteria optimization 

The task of dynamic optimization of the multi-criteria 
quality indicator F can be presented as follows: 
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One of the more commonly used methods is the 
weighted sum of the integral function: 
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An example is the optimal stabilization of the ship's 
course using the optimal autopilot with the following control 
criterion: 
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where: 
To - the time during which the ship passes the maximum 
distance on a given course, 
 - deviation of the actual course of the ship measured by 
the gyrocompass from the set value, 
 rudder angle, 
 weight coefficient, which is a trade-off between steering 
accuracy and control cost,  @0,1 for ship navigation in 
restricted waters and  @10 for ship navigation in open 
waters [13-16].                                       

IV.3. Game multi-criteria optimization 

Taking into account the form of a quality indicator, the 
issues of optimal control of transport or logistics processes 
can be divided into three groups, for which the cost of the 
process: 
• is an explicit control function, 
• depends on the control method and on some accidental 

event with a known statistical description, 
• is determined by the choice of control method and some 

indeterminate factor with unknown statistical description. 
The last group of issues concerns the quarterly transport or 
logistics processes whose synthesis is carried out using 
methods of game theory [17-19]. 

Taking into account the high complexity of the general 
differential game model become simplified models are 
formulated for practical synthesis of control algorithms, with 
the use of selected methods of artificial intelligence. 

Appropriate algorithms for safe ship control in collision 
situations can be assigned to individual process models. 
Positional and matrix game models are used for the practical 
synthesis of control algorithms: 
1. Multi-stage positional game algorithm 

Fig. 8. Ship trajectories in non-cooperative positional game F
F*minmaxminL , when passing 12 encountered ships in good 
visibility at sea, L – distance to the nearest turning point on the 
reference trajectory 

Fig. 9. Ship trajectories in cooperative positional game
F*minminminL , when passing 12 encountered ships in good 
visibility at sea 

2. Multi-step matrix game algorithm 

Fig. 10. Ship trajectories in non-cooperative matrix game 
F*minmax r , when passing 12 encountered ships in good 
visibility at sea, r – risk of collision 

Fig. 11. Ship trajectories in cooperative matrix game
F*minmin r , when passing 12 encountered ships in good 
visibility at sea 
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V. CONCLUSIONS 
In synthesis of the controller or the optimal control 

algorithm for a given transport or logistic object, both 
static and dynamic analytical and numerical 
optimization methods can be used. 

However, various optimization tasks in practical 
applications are most often solved by means of 
appropriate numerical methods of static and dynamic 
optimization. 

 
W artykule przedstawiono cztery główne rozdziały, 
które pozwalają sformułować zadanie optymalizacji i 
wybrać metodę jego rozwiązania, od metod 
optymalizacji statycznej i dynamicznej do optymalizacji 
jedno i wielokryterialnej. W grupie metod 
optymalizacji statycznej metody te są bez ograniczeń i 
z ograniczeniami, gradientowe i bez gradientowe oraz 
heurystycznie. Metody optymalizacji dynamicznej 
dzielą się na podstawowe - bezpośrednie i pośrednie 
oraz specjalne. Szczególną uwagę zwrócono na 
optymalizację wielokryterialną w podejściu do jednego 
obiektu jako optymalizację statyczną i dynamiczną oraz 
optymalizację wielu obiektów w scenariuszach 
sterowania rozgrywającego. Artykuł pokazuje nie tylko 
klasyczne metody optymalizacji, które zostały 
opracowane wiele lat temu, ale także najnowsze w tej 
dziedzinie, w tym między innymi metody roju cząstek. 
Słowa kluczowe: metody optymalizacji, sterowanie 
optymalne, bezpieczne sterowanie statkiem, symulacja 
komputerowa 
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