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1. INTRODUCTION 

The most popular models of linear two-dimensional (2-D) systems are the models introducted 
by Roesser in 1975[14]. Fornasini and Marchasini models in 1978 [2] and Kurek in 1985 [12].  
An overview of 2D linear systems theory is given in [3,5-7,15-17]. The switch linear systems 
described by the Roesser models have been analyzed in [4,5]and positive descriptor systems  
in [16].The fractional systems have been analyzed in [7,15,16] and positive switch 2D linear system 
in [7].  

In this paper new simple sufficient conditions of the asymptotic stability of the discrete-
time and continuous-time have been proposed. The paper is organized as follows. In Section 
2 basic definitions and theorems concerning discrete-time and continuous-time linear 2D 
Roesser models are recalled. New sufficient conditions of the asymptotic stability  
of the discrete-time 2D Roesser model are given in Section 3 and of the continuous-time 2D 
Roesser model in Section 4. Concluding remarks are given in Section 5.The following 

notation will be used:   - the set of real numbers, 
mn  - the set of mn  real matrices, 

nI - the nn  identity matrix. 

2. THE DISCRETE-TIME ROESSER MODEL 

Consider the discrete-time 2D Roesser model[14] 
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where 1nh
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Boudary conditions for the model are given by 
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Theorem 2.1. The solution of (2.1a) with boundary conditions (2.1c) is given by 
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0ijT  for 0i or/and  .0j  (2.2d) 

 
Definition 2.1. [6-8.9.10,11] The Roesser model (2.1) is called (locally) controllable  

in the rectangle )],(),0,0[( kh  if for every boundary conditions ,1
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Theorem 2.2. [6-8,9,10,11] The Roesser model is controllable in the rectangle )],(),0,0[( kh  

if and only if 

,)],(),...,,(),...,0,1(),1,0([rank nkhMjiMMM   (2.3a) 

 
where 

011,10,1),( BTBTjiM jiji   . (2.3b) 

 
Definition 2.2. [6] The Roesser model (2.1) is called (locally) observable in the rectangle 

)],(),0,0[( kh  if there is no local initial state 0)0,0( x  such that for zero inputs ,0iju
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Theorem 2.3. [6] The Roesser model (2.1) is observable in the rectangle )],(),0,0[( kh  if and 
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The observability is the dual notion with respect to the local controllability of the Roesser model 

[10,11]. 

3. STABILITY OF THE 2D DISCRETE-TIME ROESSER MODEL 

Consider the discrete-time autonomous (B=0) model (2.1). 
 
Definition 3.1.[6]. The 2D Roesser model (2.1a) is called asymptotically stable if for zero input 
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Consider the autonomous discrete-time Roesser model with 
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For each row of the matrix (3.2) we may define the circle rkC  with the center in the point 
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Similarly for each column of the matrix (3.2) we may define the circle ckC  with the center  

in the point nkakk ,...,1,   and the radius 
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Theorem 3.1. The Roesser model with (3.2) is asymptotically stable if one of the conditions  

is satisfies 

1) All circles rkC  for k=1,…,n are located in the unit circle (with center in the point (0,0)  

and redius equal 1) 

2) All circles ckC  for nk ,...,1  are located in the unit circle. 

Proof. Let kki nikz ,...,1;2,1,   be the eigenvalues of the matrix kkA  and kiv   

the corresponding vector. Then from the equalities 
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From (3.6) it follows that the eigenvalues kiz  are located inside the circle or on the circle 

)( ckrk CC , nk ,...,1 . Considerations for columns are similar. This completes the proof. □ 

 
Example 3.1. Check the stability of the Roesser model (3.2) with the matrix 
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Applying the Theorem 3.1 for circles rkC  we obtain: 

1rC  - the center in the point 3.011 a  and radius 6.01 R , 

2rC  - the center in the point 1.022 a  and radius 6.02 R , 

3rC  - the center in the point 4.033 a  and radius 5.03 R , 

4rC  - the center in the point 3.044 a  and radius 6.04 R . 

Therefore, the first condition of Theorem 3.1 is satisfied. 

Applying the Theorem 3.1 for circles ckC  we obtain: 

1cC  - the center in the point 3.011 a  and radius 6.01 R , 

2cC  - the center in the point 1.022 a  and radius 4.02 R , 

3cC  - the center in the point 4.033 a  and radius 6.03 R , 

4cC  - the center in the point 3.044 a  and radius 7.04 R . 

Therefore, the second condition of Theorem 3.1 is satisfied and the Roesser model is 
asymptotically stable. 

 
Remark 3.1. It is well-known that the similarity transformation 
 

1 PAPA  (3.8) 

 
does not change the eigenvalues of the matrix A since    
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]det[]det[ AzIAzI nn  . (3.9) 

By suitable choice of the diagonal entries nipi ,...,1,0   of the matrix 
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which satisfies the conditions of Theorem 3.1. 
 
Example 3.2. Consider the Roesser model (3.2a) with the matrix 
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In this case the circles for (3.12) have the parameters : 

1rC  - the center in the point 3.011 a  and radius 8.01 R , 

2rC  - the center in the point 1.022 a  and radius 4.02 R , 

3rC  - the center in the point 3.033 a  and radius 5.03 R , 

4rC  - the center in the point 2.044 a  and radius 3.04 R . 

 
In this case the row conditions of Theorem 3.1 are not satisfied since the sum of moduli  

of the first row of the matrix A is greater 1and the condition 1 of Theorem 1 is not satisfied. 
For columns the circles for (3.12) have the parameters: 

1cC  - the center in the point 3.011 a  and radius 4.01 R , 

2cC  - the center in the point 1.022 a  and radius 6.02 R , 

3cC  - the center in the point 3.033 a  and radius 4.03 R , 
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4cC  - the center in the point 2.044 a  and radius 6.04 R . 

Note that the sum of modules of the entries of the entries of all columns are less than 1  
and the condition 2 of Theorem 3.1 is satisfied. Therefore, the Roesser model with the matrix (3.7) 
is asymptotically stable. 

Following Remark 3.1 we choose the matrix P in the form 
 

]2,1,1,1[diagP  (3.13) 

 
Using (3.11), (3.12) and (3.13) we obtain 
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Note that the matrix (3.14) satisfies both conditions of Theorem 3.1 and the matrix  

is asymptotically stable. 

4. STABILITY OF THE 2D CONTINUOUS-TIME ROESSER MODEL 

Consider the continuous-time 2D Roesser model [15,7] 
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Boundary conditions for the model are given by 
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Consider the autonomous Roesser model 
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Theorem 4.1. The 2-D continuous-time Roesser model (4.3) is asymptotically stable  

if the diagonal entries of the matrix (4.4b) are negative and one of the following conditions 
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is satisfied. 

Proof. Let kki niks ,...,1;2,1,   be the eigenvalues of the matrix kkA  and kiw   
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From (4.8) it follows that the eigenvalues kis  are located inside the circle or on the circle 

)( ckrk CC , nk ,...,1 . The considerations for rows are similar. This completes the proof. 

 
Example 4.1.Check the stability of the Roesser model (4.3) with the matrix 
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Using Theorem 4.1 we obtain 

1rC  - the center in the point 211 a  and radius 5.11 R , 

2rC  - the center in the point 322 a  and radius 4.22 R , 

3rC  - the center in the point 233 a  and radius 8.13 R , 

4rC  - the center in the point 4.244 a  and radius 9.04 R . 

Note that the row conditions of Theorem 4.1 are satisfied. 
For columns the circles for (4.9) have the parameters: 

1cC  - the center in the point 211 a  and radius 7.11 R , 

2cC  - the center in the point 322 a  and radius 6.12 R , 
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3cC  - the center in the point 233 a  and radius 5.13 R , 

4cC  - the center in the point 4.244 a  and radius 8.14 R . 

The column conditions of Theorem 4.1 are also satisfied. Therefore, the Roesser model with 
(4.8) is asymptotically stable. 

5. CONCLUDING REMARKS 

New simple sufficient conditions for the asymptotic stability of the discrete-time and 
continuous-time 2D Roesser models have been proposed. The effectiveness of the conditions has 
been demonstrated by simple numerical examples. The presented new stability conditions  can be 
extended to the Fornasini-Marchesini models and the general model of 2D linear systems. An open 
problem is an extension of these considerations to the fractional orders 2D linear systems.  
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