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Abstract   A new approach for the stabilization of the linear continuous-time and discrete-time 
systems is proposed. The desired asymptotically stable state matrices of the linear systems are 
obtained by pre-multiplication and post-multiplication of the system matrix by suitable square 
matrix. Procedures for computation of the matrices are given and illustrated by simple numerical 
examples. 
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1. INTRODUCTION 

The concepts of the controllability and observability introduced by Kalman [9,10] have been the 
basic notions of the modern control theory. It well-known that if the linear system is controllable 
then by the use of state feedbacks it is possible to modify the dynamical properties of the closed-
loop systems [1, 2, 4-15]. If the  linear system is observable then it is possible to design an observer 
which reconstruct the state vector of the system [1, 2, 5-15]. Descriptor systems of integer and 
fractional order has been analyzed in [6,14]. The stabilization of positive descriptor fractional linear 
systems with two different fractional order by decentralized controller have been investigated in 
[14]. In [4] it has been  shown that it is possible to assign arbitrarily the eigenvalues of the closed-

loop system with state feedbacks if nBA ][rank .  

In this paper a new approach to the stabilization of the linear continuous-time and discrete-time 
systems will be proposed. 

In section 2 some basic definitions and theorems concerning controllability, observability and 
stability of linear systems are recalled. In Section 3 the Frobenius canonical forms of the matrices 
are given and applied in algebraic matrix equations. New methods for stabilization of the linear 
systems by multiplication of the system matrix by suitable matrices is proposed in Section 4 for 
continuous-time and  in Section 5 for discrete-time systems. Concluding remarks will be given in 
Section 6. 

The following notation will be used:   - the set of real numbers, mn  - the set of mn  real 

matrices, nI - the nn  identity matrix, the upper index T denotes the transposition of the matrix. 



A New Approach To The Stabilization Problem Of Linear Systems 

8 

2. PRELIMINARIES 

Consider The linear continuous-time system 
 

BuAxx  , (2.1a) 

Cxy  , (2.1b) 

 

where ntxx  )( , mtuu  )( , ptyy  )(  are the state, input and output 

vectors and 
nnA  , 

mnB  , 
npC  . 

 

Definition 2.1. The system (2.1) (the pair (A,B)) is called controllable in the interval ],0[ ftt  

if there exists an input u(t), ],0[ ftt  which steers the system from the initial state )0(0 xx   

to the given final state )( fxx f  . 

 
Theorem 2.1. The system (2.1) (the pair (A,B)) is controllable if and only if one of the following 

equivalent conditions is satisfied: 
1) Kalman condition 

 nBAABB n  ]...[rank 1
 (2.2) 

2) Hautus conditio 
 

nBAsIn  ][rank
 
for Cs  (the field of complex numbers) (2.3) 

 
Definition 2.2. The autonomous linear system  

,Axx   
nnA   (2.4) 

is asymptotically stable if 

0lim)(lim 0 


xetx At

tt
 (2.5) 

for all finite 
nx 0 . 

 
Theorem 2.2. The system (2.4) is asymptotically stable if and only if 
 

0Re is  for i = 1,…,n (2.6) 

where si are the eigenvalues of the matrix A and  
 

))...()((]det[ 21 nn ssssssAsI   (2.7) 

Consider the linear discrete-time system 
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iii BuAxx 1 , (2.8a) 

 

ii Cxy  , (2.8b) 

 

where 
n

ix  , 
m

iu  , 
p

iy   are the state, input and output vectors and 
nnA  , 

mnB  , 
npC  . 

 
Definition 2.3. The system (2.8) (the pair (A,B)) is called controllable in the interval [0,q] if there 

exists an input ui for i = 0,1,…,q-1  which steers the system from the initial state x0 to the given final 
state xq.  

 
Theorem 2.3. The system (2.8) (the pair (A,B)) is controllable if and only if one of the following 

equivalent conditions is satisfied: 
Kalman condition 

nBAABB n  ]...[rank 1
 (2.9) 

Hautus condition 
 

nBAzI in  ][rank   for Ciz  (the field of complex  numbers) (2.10) 

 
Definition 2.4. The autonomous system 

,1 ii Axx   
nnA   (2.11) 

is asymptotically stable if 

0limlim 0 


xAx i

i
i

ni
 (2.12) 

for all finite 
nx 0 . 

 
Theorem 2.4.The system (2.8) is asymptotically stable if and only if 

1iz  for  i =1,…,n (2.13) 

 
where zi are the eigenvalues of the matrix A. 
From comparison of (2.6) and (2.11) we have the following  remark. 
 
Remark 2.1. The asymptotic stability of the continuous –time systems (2.1) depends on the 

phase of the eigenvalues si and of the discrete-time systems (2.8) on the absolute values (modulus) 
of the eigenvalues zi.  
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3. ALGEBRAIC EQUATIONS WITH MATRICES IN FROBENIUS CANONICAL FORMS 

Definition 3.1.The matrix 
nnA   has the Frobenius canonical form if it has one of the 

following forms [4] 

.

0...00

1000

...............

0...10

0...01

,

01...00

...............

00...10

00...01

...

,

1...00

...............

0...10

0...01

0...00

,

...

10000

...............

0...100

0...010

0

1

2

1

34

0121

3

1

2

1

0

12

1210

1





















































 



































































a

a

a

a

AA

aaaa

A

a

a

a

a

AA

aaaa

A

n

n

T

nn

n

T

n  

(3.1) 
 
Lemma 3.1. The inverse matrices of the matrices (3.1) have also the Frobenius canonical forms 

.

1...00

...............

0...10

0...01

1
0...00

,

...
1

10000

...............

0...100

0...010

,

0...00
1

1000

...............

0...10

0...01

,

01...00

...............

00...10

00...01

1
...

0

1

0

2

0

1

0

1

4

0

1

0

2

0

1

0

1

3

0

0

1

0

2

0

1

1

2

00

1

0

2

0

1

1

1


























































































































































a

a

a

a

a

a

a

A

a

a

a

a

a

a

a

A

a

a

a

a

a

a

a

A

aa

a

a

a

a

a

A

n

n

n

n

n

 

(3.2) 
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Lemma 3.2. If the matrices A and B in the equation 
 

,1 BAX   
nnBA , , 0det A  (3.3) 

have the same Frobenius canonical forms then its solution 
nnX 1  has  the following form 

 





























10...00

...............

00...00

00...10

... 121

1

1

nn xxxx

BAX  (3.4a) 

where  

0

11

0

22
1

0

11
2

0

0
1 ,,...,,

a

ab
x

a

ab
x

a

ab
x

a

b
x nn

n
nn

n











 . (3.4b) 

 
Proof. Let the matrices A and B have the same Frobenius canonical form 
 

0det,

...

10000

...............

0...100

0...010

,

...

10000

...............

0...100

0...010

0

1210

1210



























































aA

bbbb

B

aaaa

A

n

n
 (3.5) 

 
then from (3.3) using (3.2) we obtain 
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,

10...00

...............

00...00

00...10

...

...

10000

...............

0...100

0...010

01...00

...............

00...10

00...01

1
...

121

1210

00

1

0

2

0

1

1


















































































nn

n

n

xxxx

bbbb

aa

a

a

a

a

a

BAX

        

(3.6) 

where ix , i = 1,…,n is given by (3.4b).  

 
Lemma 3.3.If the matrices A and B in the equation 
 

,2 BAX   
nnBA , , 0det A  (3.7) 

 
have the same Frobenius canonical forms then its solution has the form 
 





























nn xxxx

BAX

ˆˆ...ˆˆ

01...00

...............

00...10

00...01

121

1

2 . (3.8) 

 
Proof is similar (dual) to the proof of Lemma 3.2. 
 
Example 3.1. Find the solution X to the matrix equations 

,1 BAX   (3.9) 

 

,2 BAX   (3.10) 
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for the matrices 

.

71612

100

010

,

032

100

010





































 BA  (3.11) 

 
Using (3.9) and (3.11) we obtain 















 









































100

010

5.35.96

71612

100

010

032

100

010
1

1

1 BAX  (3.12) 

 
 and  for (3.10) and (3.11) 





























































672

010

001

032

100

010

71612

100

010
1

1

2 BAX  (3.13) 

 
Note that the solutions X1 and X2 have different forms. 
 
Remark 3.1. Lemmas 3.2 and 3.3 can be extended to the remaining Frobenius canonical forms 

of the matrices A and B.   
 

4. STABILIZATION OF THE CONTINUOUS-TIME LINEAR SYSTEMS 

Let SM be the set of real matrices 
nnA   which by the similarity transformation 

 

0det,1  PSPAP M  (4.1) 

 
can be reduced to the Frobenius canonical forms (3.1). 

For given unstable matrix 
nnA   we are looking for the nonsingular matrix 

nnM   

such that 

AMA   (4.2) 

or 

AAM   (4.3) 

 

where 
nnA   is asymptotically stable (Hurwitz matrix) in the Frobenius canonical form 

(3.1). 
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From (4.2) and (4.3) we have 

1 AAM  (4.4) 

and 

AAM 1  (4.5) 

 
By Lemma 3.2 and 3.3 the matrix M has the special forms (3.4) and (3.8), respectively. 
Therefore, the following theorem has been obtained. 
 

Theorem 4.1.If the given matrix 
nnA   and the desired asymptotically stable matrix 

nnA   have both  the same Frobenius canonical form then  the nonsingular matrix M is given 

by (4.4) and (4.5), respectively.   
 
Example 4.1. For the unstable matrix 













21

10
A  (4.6) 

and the desired asymptotically stable matrix 
 













56

10
A  (4.7) 

compute the matrix 
22M . 

 
Using (4.4), (4.5), (4.6) and (4.7) we obtain 
 






































617

01

21

10

56

10
1

1AAM  (4.8) 

and 








 



























10

36

56

10

21

10
1

1AAM . (4.9) 

 

Now let us consider the following more general case. The matrix 
nnA   is nonsingular and 

unstable and the desired matrix 
nnA   is asymptotically stable in the Frobenius canonical 

form. The desired matrix 
nnM   can be computed using (4.4) and (4.5). 

  



JAEEE Volume 6, No. 2 / 2024 

15 

Example 4.2. The matrices A and A  have the forms 
 

.

52727

100

010

,

220

010

102





































 AA  (4.10) 

 
Note that the matrix A is unstable 

 

2

3 )2)(1(

220

010

102

]det[ 







 ss

s

s

s

AsI  (4.11) 

 

and the matrix A  is asymptotically stable 
 

2

3 )3(

92727

10

01

]det[ 







 s

s

s

s

AsI . (4.12) 

 
Using (4.4) and (4.10) we obtain 
 



































































5.55.135.13

100

75.275.525.6

220

010

102

52727

100

010
1

1AAM   

(4.13) 
and using (4.5) and (4.10) 
 





























































5.225.225.13

5.010

010

52727

100

010

220

010

102
1

1AAM   

(4.14) 
Note that the matrices (4.13) and (4.14) are different and unstable. 
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From the above considerations we have the following conclusion: 

Conclusion 4.1. For any nonsingular matrix 
nnA   of the linear continuous-time system 

(2.1) there exists the nonsingular matrix 
nnM   such that the matrix 

nnA   has the 
desired eigenvalues.  

5. STABILIZATION OF THE DISCRETE-TIME LINEAR SYSTEMS  

Let 
n


 be the set of n-dimensional vector with nonnegative components and 

nn


 be the 

set of nn  matrices 
][ ijaA 

 with nonnegative entries 
0ija

 for i,j = 1,…,n. 

Definition 5.1.The linear system (2.11) is called positive if for any initial conditions 
nx 0  

the state vector 
n

ix   for i = 1,2,… 

Theorem 5.1. [7] The linear system (2.11) is positive if and only if 
nnA 

 . 

 
Definition 5.2. The linear system (2.11) is called asymptotically stable if for any initial conditions 

nx 0  

0lim 


i
i

x  (5.1) 

 
Theorem 5.2. [6] The positive linear system (2.11) is asymptotically stable if and only if there 

exists a vector 
n

  with all positive components 0i , i =1,…,n such that 

 A  and  A . (5.2) 

 

Note that if the matrix 
nn

ijaA  ][  i, j =1,…,n  then the matrix  
nn

ijaA 

 ][' . 

Therefore, by Theorem 5.2, we have the following 
 

Theorem 5.3. The matrix 
nn

ijaA  ][  is asymptotically stable if 

1
1




n

j

ija  for i =1,…,n (5.3a) 

 or  

1
1




n

i

ija  for j = 1,…,n. (5.3b) 

 

From Theorem 5.3 it follows that the matrix 
nnM   can be chosen so that the matrices 

MA and AM are asymptotically stable. Therefore, we have the following theorem.       
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Theorem 5.4. For unstable matrix 
nnA   of the discrete-time linear system (2.11) there 

exists a nonsingular matrix 
nnM   such that the matrices MA and AM are asymptotically 

stable. 
 
Remark 5.1. If matrix A has some negative entries then we obtain more restrictive stability 

conditions comparing with the case with positive entries.        
 
Example 5.1. Consider the discrete-time system (2.11) with the matrix 
 











21

12
A  (5.4) 

The matrix (5.4) is unstable since 

5
21

12
]det[ 2

2 



 z

z

z
AzI  (5.5) 

and the eigenvalues of the matrix (5.4) are 5,5 21  zz . 

To stabilize  the system we choose the matrix M in the form 
 











05.02.0

05.01.0
M . (5.6) 

In this case 
































3.035.0

2.115.0

21

12

05.02.0

05.01.0
MA  (5.7) 

and 








 



















15.05.0

05.00

05.02.0

05.01.0

21

12
AM . (5.8) 

 
The matrices (5.7) and (5.8) are asymptotically stable. 
If in the matrix (5.4) the negative entry – 2 is substituted by its positive value 2, then we obtain 
 




























3.045.0

2.025.0

21

12

05.02.0

05.01.0
MA  (5.9) 

and 




























15.05.0

15.04.0

05.02.0

05.01.0

21

12
AM . (5.10) 



A New Approach To The Stabilization Problem Of Linear Systems 

18 

 
Note that the matrices (5.9) and (5.10) are also asymptotically stable.  

A real matrix 
nnA   is called nilpotent if there exists a natural number (called the 

nilpotency index) nv   such that 01 vA  and 0vA . The nilpotent matrix has only zero 

eigenvalues. 
 
Theorem 5.5. If the matrix A in equation (2.11) is nilpotent with index v then its solution satisfies 

the condition 

00  xAx i

i  for ,...1,  vvi  (5.11) 

Proof follows immediately from the definition of the nilpotent index v and that 00 xAi
 for 

,...1,  vvi  for any finite 
nx 0 . 

 
Example 5.2. Compute the solution of the equation (2.11) for the following two nilpotent 

matrices 
Case 1. 

.

020

000

010

1

















A  (5.12a) 

Case 2. 

.

000

100

210

2

















A  (5.12b) 

 
Case 1.The nilpotency index of the matrix (5.12a) is v = 2, since 
 

.

000

000

000

020

000

010
2

2

1



































A  (5.13) 
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In this case for any finite initial condition 00 x  we have 



















0

0

0

0

2

12 xAx  for i = 2,3,… (5.14) 

 
Case 2.The nilpotency index of the matrix (5.12b) is v = 3, since 
 

.

000

000

000

000

100

210
3

3

2



































A  (5.15) 

 

In this case for any finite initial conditions 00 x  we have 

 



















0

0

0

0

3

23 xAx  for i = 2,3,… (5.16) 

 

Theorem 5.6. If the matrix 
nnA   is nonsingular then there exists a matrix 

nnM   

such that 

nAMA 1  (5.17a) 

and 

nAAM 2  (5.17b) 

 

where  
nn

nA 1  and 
nn

nA 2  are given nilpotent matrices. 

Proof. By assumption the matrix A is nonsingular and there exists its inverse 
1A . From (5.17a) 

we have 

1

1

 AAM n  (5.18) 

and from (5.17b) 

nAAM 2

1  (5.19) 

 
respectively. This completes the proof. 
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Example 5.3. For unstable system with the matrix 
 





















110

120

201

A  (5.20) 

 

find the matrices 
1M  and 

2M  for the nilpotent matrix 

 



















000

100

200

21 nn AA . (5.21) 

 
Using (5.18), (5.19), (5.20) and (5.21) we obtain 
 

































































000

210

420

110

120

201

000

100

200
1

1

1 AAM n , (5.22) 

 





























































100

100

000

000

100

200

110

120

201
1

2

1

nAAM . (5.23) 

 
Note that the matrices (5.22) and (5.23) are different. 

6. CONCLUDING REMARKS 

New approaches to the stabilization of the continuous-time and discrete-time linear systems 
have been proposed. The matrix algebraic equations  with the Frobenius canonical matrices have 
been investigated (Theorem 4.1). It has been shown that for unstable matrix A of the discrete-time 
linear system (2.11) there exists a nonsingular matrix M such that:  

1) the matrices MA and AM are both asymptotically stable (Theorem 5.4), 
2) if the matrix A is nonsingular then there exists a matrix M such that the matrices MA and 

AM are nilpotent (Theorem 5.6). 
The considerations have been illustrated by simple numerical examples. The considerations can 

be extended to the positive continuous-time and discrete-time linear systems, the fractional orders 
linear systems and to the 2-D linear systems described by the Roesser model. 
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