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Abstract  The article presents a mathematical model of a multi-stage game of the process of safe control of a transport object 
in possible collision situations with other encountered objects, containing a description of state variables, state and control 
constraints, and sets of permissible object strategies. Multi-criteria optimization tasks were formulated in the form of positional 
and matrix games under the conditions of playing non-cooperative and cooperative control as well as non-game optimal 
control. The multi-criteria control algorithms corresponding to these tasks were computer simulated in Matlab / Simulink on the 
example of a real situation. 
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INTRODUCTION 
The issues of optimal control of transport and 

logistics processes can be divided into those for which 
the cost of the process: is an unambiguous control 
function, depends on the control method and on 
some random event with a known statistical 
description, or is determined by the choice of the 
control method and some undefined factor. The last 
group of issues concerns transport and logistic game 
processes, the synthesis of which is carried out using 
the methods of game theory [1-4,18]. The basic game 
control systems are positional control systems of 
objects as feedback systems representing positional 
and matrix games, for example, safe steering of a ship 
in collision situations at sea.1 

I. MODEL OF THE MULTI-STAGE GAME PROCESS 
The essence of the positional game is the dependence 

of the strategy of one's own object on the position p(tk) of 
the encountered objects in the current stage of motion k. In 
this way, possible changes in the course and speed of the 
encountered objects during the control are taken into 
account in the process model [6-10] (Fig. 1). 

 

 

 

 

                                                                                              
1 Article financed from Research Project Ordered of UMG No. 

PBZ_WE/2022/PZ/02. „Simulation models of optimal control of 
moving dynamic objects”. 

 

 

 

 

 
 
 
 
 
 
 
Fig. 1. Schematic diagram of the control process of moving objects 

I.1. The state of the control process 

The current state of the process is determined by the x0 
position of the own object and the xj positions of the 
encountered objects. 

      
x0 = X0,Y0( ) , xj = Xj,Yj( ) , j=1,2,...,m              (1) 

 
The system generates its control at the moment of tk based 
on the data it receives from the radar anti-collision system 
about the current position of the tracked objects: 

        (2) 

It is assumed, in accordance with the general concept of 
multi-stage games, that the position of the objects 
encountered is known at every discrete time moment tk on 
one's own object [12,17,20,27-31]. 
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I.2. The state and control variables constraints 

The state variable constraints are the navigational 
limitations: 

                                      x0 t( ) , xj t( ){ } ÎP                                 
(3) 

The control constraints take into account the kinematics of 
the movement of objects, the recommendations of the 
right of way and the condition of maintaining a safe passing 
distance ds (Figure 2) [15]: 

               
u0 ÎU0 ,uj ÎUj, j=1, 2,....,m

            
(4) 

 
Fig. 2. State variables describing the process of passing 
ships 

I.3. The sets of allowed objects strategies 

The sets of permissible strategies of the game 
participants in relation to each other are dependent, which 
means that the selection of the control of the j by the j-th 
encountered object changes the sets of permissible 
strategies of other objects described by the relationship: 

        (5) 

Figure 3 shows the method of determining the sets of 
acceptable object strategies - own 0 and met j. 

 
Fig. 3. Determining sets of permissible strategies of the own 
object 0 and the encountered object j 

 
The set U0, j is defined by the inequalities: 

  (6) 
where: 

                                            (7) 

The value of w0,j is determined by the logical function Wj 

characterizing the requirements of the rules of the right of 
way. The form of the Wj function depends on the 
interpretation of the right of way rules for the synthesis of 
the safe object control algorithm: 

    (8) 

The set of acceptable strategies of the j-th object for the 
own object is determined analogously by determining the 
following inequalities: 

      (9) 

where: 

                                                 (10) 

II. MULTI-CRITERIAL OPTIMIZATION OF THE GAME 
To determine the optimal maneuver of the own 
object in the allowable control area, which is 
connected to all objects encountered: 

   (11) 

Optimal control of own object u0*(t), equivalent to the 
current position p(t) optimal positional control u0*(p), is 
determined as follows: 
- sets of acceptable strategies Uj,0[p(tk)] of the encountered 
objects in relation to the own object and the initial sets  
U0,j[p(tk)] of acceptable strategies of the own object in 
relation to each of the encountered objects are defined, 
- with respect to each j-th encountered object, a pair of 
vectors u0,j and uj,0 are determined, and then the optimal 
positional strategy of the own object from the optimum 
condition Q* of the control quality index [5,13,14,16,23-
26]. 
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II.1. Non-cooperative positional game control algorithm 
pgnc 

The pgnc multi-stage positional game algorithm uses the 
following optimization criterion: 

  

 (12) 

where: L0 - means the ship's own continuous steering target 
function, characterizing the ship's distance at time t0 to the 
nearest turning point Lk on a given voyage route. 
 
First, the control of own ship is determined, ensuring the 
shortest passing trajectory, i.e. the smallest path losses 
(condition min) for non-cooperative steering of each ship 
that meets, contributing to the greatest extension of the 
own ship's trajectory (condition max).  
Finally, from the own ship's controls set to the individual j 
ships met, the own ship controls are selected for all n 
encountered ships, ensuring the lowest path losses 
(condition min). 
According to the three optimization conditions (min max 
min), a triple linear programming method is used to solve 
the game, obtaining the optimal values for the course and 
speed of your own ship.  
The smallest loss of the road is achieved for the maximum 
projection of the own ship's speed vector on the direction 
of the set course. The optimal control is calculated many 
times at each discrete stage of motion using the Simplex 
method to solve the linear programming problem for 
variables in the form of the ship's own velocity vector 
components. 

II.2. Cooperative positional game control algorithm pgc 

The pgc multi-stage positional cooperative game algorithm 
uses the following optimization criterion: 

  

 (13) 

The difference from the pgnc algorithm results from the 
use of cooperative action between ships in order to avoid 
collisions by all j objects and replacing the second condition 
max to min. 

II.3. Non-game positional control algorithm ngpc 

The ngpc multi-stage non-game control algorithm uses the 
following optimization criterion: 

     

               (14) 

The choice of the optimal trajectory of the ship according to 
criteria (12), (13) and (14) comes down to determining its 
course and speed ensuring the least loss of the way to 
safely pass the encountered objects, at a distance not 

shorter than the assumed value of ds, taking into account 
the dynamics of the ship in the form of advance maneuver 
time. The smallest loss of the road is achieved for the 
maximum projection of the own ship's speed vector on the 
direction of the set course. The lead time consists of the 
lead time and the lead time of the own vessel's speed 
change [19]. 

II.4. Non-cooperative risk game control algorithm rgnc 

The risk value (15) is possible to define by referring the 
current situation of approach, described by parameters 

Dmin
j  and Tmin

j , to the assumed evaluation of the situation 

as safe, determined by a safe distance of approach ds and a 
safe time Ts – which are necessary to execute a collision 
avoiding manoeuvre with consideration of distance Dj to j-
th met ship: 

  (15) 

The weight coefficients k1 and k2 depended on the 
state visibility at sea, dynamic length Ld and dynamic 
beam Bd of the ship, kind of water region and in 
practice are equal: 

       1)],(),,([0 21  dddd BLkBLk          (16) 

                         Ld =1.1 (1+0.345 V1.6)                            (17) 

                        Bd =1.1 (B+0.767 LV0.4)                           (18) 

As a result of using the following form for the control 
goal: 

                              Qrgnc
* =min

uo

max
uj

rj
                            (19) 

the probability matrix P=[pj (u0,uj)] of using particular 
pure strategies may be obtained.  
The solution for the control problem is the strategy 
representing the highest probability: 

                          
uo

* =uo [pj(uo,uj)]max{ }                         (20) 

II.5. Cooperative risk game control algorithm rgc 

The quality index of control for a cooperative game 
has the form:  
                                  Qrgc

* =min
uo

min
uj

rj
                          (21) 

II.6. Non-game risk control algorithm ngrc 

In the usual case of non-game control, the quality 
index is reduced to the following form: 

                                           Qngrc
* =min

uo

rj
                                (22) 
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The pgnc, pgc, ngpc, rgnc, rgc and ngrc algorithms for 
determining the safe trajectory of the ship in a collision 
situation were developed using the lp - linear programming 
function from the Optimization Toolbox of the 
Matlab/Simulink software [11,21,22]. 

III. COMPUTER SIMULATION OF CONTROL ALGORITHMS 
Safe trajectories of own ship in the situation of 19 
encountered ships in the Kattegat Strait, in conditions 
of limited visibility at sea at ds=1.5 nm (Table 1), 
determined according to multi-criteria optimization 
algorithms, are shown in Figs. 4 to trough 11. 
 

Table 1. Movement parameters of the own ship and 
encountered 19 ships 

j Dj 

nm 
Nj 

deg 
Vj 

kn 
j 

deg 
0 - - 20 0 
1 9 320 14 90 
2 2 10 16 180 
3 8 10 15 200 
4 12 35 17 275 
5 7 270 14 50 
6 8 100 8 6 
7 11 315 10 90 
8 13 325 7 45 
9 7 45 19 10 
10 15 23 6 275 
11 15 23 7 270 
12 4 175 4 130 
13 13 40 0 0 
14 7 60 16 20 
15 8 120 12 30 
16 9 150 10 25 
17 8 310 12 135 
18 10 330 10 140 
19 9 340 8 150 

 

 
Fig. 4. The eighteen minutes speed vectors of own ship 0 and j=19 
encountered ships in navigational situation in Kattegat Strait 

 
Fig. 5. Ship trajectories in non-cooperative positional game pgnc 

 
Fig. 6. Ship trajectories in cooperative positional game pgc 

 
Fig. 7. Ship trajectories in non-game positional control ngpc 
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Fig. 8. Ship trajectories in non—cooperative matrix game rgnc  

 
Fig. 9. Ship trajectories in cooperative matrix game rgc 

 
Fig. 10. Ship trajectories in non-game matrix control ngrc 

 
Fig. 11. Comparison of optimal ships trajectories  

IV. CONCLUSIONS 
The purpose of multi-criteria optimization is to 

determine a set of the best solutions that 
simultaneously meet a set of many, often 
contradictory, optimization criteria, for example risk 
minimization and profit maximization. 

Dynamic optimization concerns problems that 
change over time, i.e. such practical optimization 
tasks in which the control objective function changes 
during the transport or production control process. 

Taking into account the high complexity of the 
dynamic game model, simplified models are 
formulated for the practical synthesis of control 
algorithms. Particular simplified models of the process 
are assigned appropriate algorithms for determining 
the safe trajectory of the ship in situations of 
excessive proximity with other encountered fixed and 
movable objects, which can be used in practice for 
computer-aided maneuvering decisions of the 
navigator. 

Formulating a mathematical model of the process 
of safe control a moving object while passing a larger 
number of other moving objects encountered as 
game models, it is possible to take into account the 
degree of ambiguity of the situation caused by the 
imperfection of the right of way rules and the 
subjectivity of the operator making a maneuvering 
decision in order to avoid a collision. 

The multi-criteria approach to the task of 
optimizing the control of safe movement of objects 
allows the synthesis of appropriate algorithms for 
controlling non-cooperative, cooperative and non-
game control.  

The obtained safe trajectories differ primarily in 
the value of the final deviation from the set trajectory 
of movement, which is a measure of the extension of 
the object's trajectory and the increase in the cost of 
its implementation, for example in the form of 
additional energy consumption of the drive system. 



Multi-criteria multi-stage game optimization  

42 

WIELOKRYTERIALNA OPTYMALIZACJA GRY WIELOETAPOWEJ 
W artykule przedstawiono model matematyczny 
wieloetapowej gry procesu bezpiecznego sterowania 
obiektem transportowym w możliwych sytuacjach 
kolizyjnych z innymi spotkanymi obiektami, 
zawierający opis zmiennych stanu, ograniczeń stanu i 
sterowania oraz zbiory dopuszczalnych strategii 
obiektów. Sformułowano wielokryterialne zadania 
optymalizacyjne w postaci gry pozycyjnej i 
macierzowej, w warunkach rozgrywającego 
sterowania niekooperacyjnego i kooperacyjnego oraz 
nierozgrywającego sterowania optymalnego. 
Algorytmy sterowania wielokryterialnego 
odpowiadające tym zadaniom poddano symulacji 
komputerowej w programie Matlab/Simulink na 
przykładzie rzeczywistej sytuacji. 
Słowa kluczowe: optymalizacja, automatyka, teoria gier, 
symulacja komputerowa 
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